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FOREWORD 

This report, "Prediction of Six-Degree-of-Freedom Store Separation 

Trajectories at Speeds up to the Critical Speed," describes a combined 

theoretical-experimental program directed toward developing a computer 

program for predicting the trajectory of an external store dropped from 

an aircraft of the fighter-bomber type at speeds up to the critical speed. 

This volume, Volume I - "Theoretical Methods and Comparisons with Experiment," 

describes the theoretical approach and presents extensive comparisons 

with experimental data.  The second volume, Volume II - "Users Manual for 

the Computer Programs," presents detailed instructions on the use of the 

computer programs. 

The work was carried out by Nielsen Engineering & Research, Inc., 

850 Maude Avenue, Mountain View, California 94040, under Contract No. 

F33615-71-C-1116.  The contract was initiated under Project 8219, Task 

821902, of the Air Force Flight Dynamics Laboratory.  The Air Force Project 

Engineer on the contract was Mr. Jerry E. Jenkins, AFFDL/FGC.  The report 

number assigned by Nielsen Engineering & Research, Inc. is NEAR TR 37. 

The authors wish to thank Mr. Jenkins for his assistance during the 

course of the investigation.  Also, they would like to thank Mr. Willard E. 

Summers and Mr. Robert H. Roberts of the 4T Projects Branch, Propulsion 

Wind-Tunnel Facility, Arnold Engineering Development Center, for the 

timely performance of the experimental test program. 

The work documented in this report was started on December 11, 1970, 

and was effectively concluded with the submission of this report.  The 

report was released by the authors in March, 1972. 

This technical report has been reviewed and is approved  for publication. 

FOR THE COMMANDER 
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JERRY E. JENKINS E. H. FLINN, Chief 
Project Engineer Control Criteria Branch 
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ABSTRACT 

The primary objective of this report is to present a prediction 

method for determining the forces, moments, and six-degree-of-freedom 

trajectories associated with stores released from single, TER, or MER 

configurations on fighter-bomber aircraft up to the critical speed.  A sec- 

ondary objective is to present important experimental results and compari- 

son with theory from an extensive wind-tunnel test program designed to 

provide data to test the theory through systematic measurements of flow 

fields, store load distributions, store forces and moments, and captive- 

store trajectories.  Extensive comparisons are made for flow-field angles, 

store loading distributions, store forces and moments, and store six-degree- 

of-f reedom trajectories.  Store normal-force distributions and side- 

force distributions are presented for single stores as influenced by air- 

plane angle of attack, vertical location under the aircraft, and presence 

of the pylon.  Similar results are presented for interference effects in 

TER configurations.  Interference between the two clusters in a MER con- 

figuration is shown.  Empennage effects are presented and compared with 

theory for a range of roll angles and angles of attack.  Comparisons are 

presented between captive-store trajectories, and those predicted by the 

six-degree-of-freedom program.  Cases are shown for a single store with- 

out empennage and with empennage.  A case of a store released from a TER 

configuration is also compared with the captive store trajectory.  Generally, 

the method does a good job of predicting detailed store loading and 

six-degree-of-freedom trajectories.  It should serve as a useful preliminary 

design tool. 
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PREDICTION OF SIX-DEGREE-OF-FREEDOM STORE SEPARATION 
TRAJECTORIES AT SPEEDS UP TO THE CRITICAL SPEED 

Volume I - Theoretical Methods and Comparisons 
With Experiment 

1.  INTRODUCTION 

This report is the final technical report describing a combined 

theoretical-experimental program which has been carried out with the 

objective of developing a method for predicting the six-degree-of-freedom 

trajectories of external stores separated from aircraft of the fighter- 

bomber type at speeds up to the critical speed.  The work documented in 

this report represents an extension and improvement of the work reported 

in reference 1.  In that work the method was limited to three degrees of 

freedom.  The pylon was not accounted for, nor was the TER or MER rack. 

The pylon and rack are accounted for in the present work.  In addition a 

new vortex-lattice model has been adopted which allows for mutual inter- 

ference between wing and pylon, as well as wing dihedral, two things which 

were not included in the vortex-lattice model of reference 1.  A new wing- 

pylon thickness model has been adopted.  The six-degree-of-freedom equations 

of motion used in the trajectory calculations allow for mass and inertia 

asymmetries of the store. 

The experimental program carried out in conjunction with the present 

theoretical program was directed toward supplementing, the data obtained 

during the experimental program conducted simultaneously with the theo- 

retical work of reference 1.  These earlier data are tabulated in 

reference 2 and the data obtained in the present program are tabulated in 

reference 3.  Some of the data are summarized in graphical form in four 

AEDC reports, references 4 through 7.  The overall experimental program 

was designed such that interference effects could be isolated through a 

component by component build-up of the parent aircraft.  At each stage of 

the build-up flow field survey, pressure distribution, and force and 

moment data were taken.  A representative set of trajectories was also 

obtained for comparison with theory. 

The next sections of this report will discuss the general method of 

approach to the interference problem, the mathematical models for the 

aircraft components, the calculation of the flow field, the calculation 

of the forces and moments, and finally the calculation of the trajectory. 

Methods which have not changed from the work of reference 1 will be 
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summarized and new methods will be described in detail.  Among the 

latter are the new wing-pylon model, the empennage force and moment calcu- 

lation, and the equations of motion with mass and inertia asymmetries. 

Finally, extensive comparisons are made with selected results from 

the wind-tunnel program for flow-field angles, store loading distributions, 

store forces and moments, and store six-degree-of-freedom trajectories. 

Store normal-force distributions and side-force distributions are presented 

for single stores as influenced by airplane angle of attack, vertical 

location under the aircraft, and presence of the pylon.  Similar results 

are presented for interference effects in TER configurations for both 

the bottom store and the shoulder stores.  In addition, the effect of 

the TER rack is shown.  Interference between the two clusters in a MER 

configuration is shown.  Empennage effects are presented and compared with 

theory for a range of roll angles and angles of attack.  A special assess- 

ment is made of the effects of store boattail on store loading distributions, 

forces and moments, and boundary-layer separation characteristics.  Also, 

the effects of store boattail on empennage forces and moments are investi- 

gated.  Comparisons are presented between captive-store trajectories, and 

those predicted by the six-degree-of-freedom program.  Cases are shown 

for a single store without an empennage and with an empennage.  A case of 

a store released from a TER configuration is also compared with the 

captive-store trajectory.  Using the computer program, the effect of 

damping is shown for a finned store. 

2.  GENERAL METHOD OF APPROACH 

The determination of the forces and moments acting on an external 

store due to the complete aircraft is a complicated problem in aero- 

dynamic interference.  The approach used herein is to make a first approxi- 

mation to the gross interference effect termed the primary interference, 

and then to consider the small residual interference as an additional 

interference.  The primary interference can be viewed as the first term 

in an iterative procedure.  Consider the entire airframe except the 

store in question which produces a nonuniform flow field at the position 

to be occupied by the store.  If we now place the store in this nonuniform 

flow field and determine its reaction, we have accounted for primary 

interference.  If now we consider the effect of the store on the airframe, 

additional velocities are induced normal to wing, fuselage, and pylon 



which must be cancelled by additional source and vortex distributions. 

This interference is termed additional interference and depends on the 

store location. 

In the present method, the pylon is considered part of the airframe 

so that the primary interference contains most of the interference even 

for the attached store.  The success of this method is in proportion to 

the degree to which the primary interference encompasses all the significant 

effects so that the additional interference can be neglected.  Methods 

for calculating additional interference have been developed in reference 1, 

where it is shown that the effect of the additional interference on the 

store is small.  However, the effect of the additional interference on 

the airframe may not be small. 

An important advantage realized by making the additional inter- 

ference effect on the store negligible is that the necessity of having 

to solve the complete mutual interference problem for the store and 

airframe is eliminated.  The matrix necessary to solve the complete mutual 

interference problem requires store control points at about 20 axial 

stations and at a number of azimuthal stations in addition to the control 

points on the airframe.  Elimination of those additional control points 

probably reduces the time to calculate the interference field to about 

1/4 of what it would be for a complete mutual interference calculation. 

Another even more significant fact is that the airframe singularity distri- 

butions yielding the primary interference field do not change with store 

position so that it is not necessary to re-solve the interference problem 

at each point in the store trajectory.  As a consequence, it is possible 

to calculate a store trajectory on existing computing machines in a 

reasonable time. 

In the method described in this report the following aircraft com- 

ponents are accounted for: 

(1) Fuselage volume 

(2) Fuselage angle of attack 

(3) Wing thickness 

(4) Wing angle of attack, camber, and twist 

(5) Pylon thickness 

(6) Pylon loading due to induced sidewash field 



(7) Rack volume 

(8) Store volume 

Fuselage volume is taken into account by approximating the shape by an 

axisymmetric body and representing this body by a series of three- 

dimensional point sources placed on the body axis.  The volumes of the 

rack and all of the stores present are accounted for in the same manner. 

Fuselage angle of attack is taken into account as a simple Beskin upwash. 

Wing and pylon thickness are accounted for by representing their thickness 

distributions by a distribution of three-dimensional source panels.  The 

wing angle of attack, camber, and twist and the pylon loading are repre- 

sented by a vortex lattice. 

Certain interference effects between aircraft components are 

accounted for in the wing-pylon vortex-lattice calculation.  These are 

(1) Fuselage in uniform flow on wing and pylon 

(2) Stores in uniform flow on wing and pylon 

(3) Rack in uniform flow on wing and pylon 

(4) Wing thickness on pylon 

(5) Pylon thickness on wing 

The interference velocities induced normal to the wing and pylon are 

treated as an induced camber and are included in the boundary condition 

used in determining the strengths of the vortices.  This represents a 

first iteration on the complete mutual interference problem. 

A second iteration would be to allow the wing and pylon to induce 

velocities in the regions of the fuselage, rack, and stores thus causing 

them to be in a nonuniform flow field.  Since the source distributions 

used to model these bodies are for a uniform flow, higher order singu- 

larities would have to be used to account for this nonuniform flow.  The 

influence of these higher-order singularities would die off more rapidly 

with distance and thus it is considered a second-order effect and is 

not included. 

With the source and vorticity distributions which represent the 

various aircraft components determined, the trajectory can be calculated. 

This requires that the forces and moments acting on the ejected store, 

including damping, be calculated at each point in the trajectory.  This 

is done by calculating the three-dimensional velocity field in which the 

store is operating as seen by the store.  To do this the store is removed 
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from the flow field and the perturbation velocity field due to the air- 

craft components is calculated at a number of points in the region the 

store had occupied.  The store is then placed back in this velocity field. 

The free-stream velocity the store sees is added to the perturbation field 

as are the store angular velocities.  The velocity field is calculated over 

the store length in this manner.  The axial distribution of store body 

forces and moments is calculated from this field and then integrated over 

the store length.  A similar procedure is used to determine the empennage 

forces and moments with the velocity field calculated at a number of points 

over each tail fin.  The method presently treats planar and cruciform 

empennages. 

3.  COMPRESSIBILITY CORRECTION 

The compressibility correction used in the present work is the same 

as that used in the work of reference 1 (see section 3 of that report). 

The compressible space (x, y, z) and the incompressible space (x^y'jZ1) 

are related by the following transformation 

x' =       x      - I, y - y, z- - z (i) 

and the velocities are related by 

P 

Also in reference 1 it is shown that the incompressible angle of attack, 

a*, is given by 

a' = 0a (3) 

The procedure used to calculate the perturbation velocity field used 

in determining the forces and moments acting on a store in the presence 

of a parent aircraft will now be briefly described.  The first step is to 

determine the source and vorticity distributions which model the various 

components of the parent aircraft.  To do this the entire configuration 

(fuselage, wing, pylon, rack and store(s)) is transformed to an equivalent 

one for incompressible flow.  A common coordinate system whose origin is 

at the fuselage nose is adopted and all components are located in this 



system.  For a given Mach number the transformation given by equation (1) 

is applied to determine the equivalent incompressible configuration.  This 

transformation results in an increase in the lengths of the fuselage, 

rack, and store(s), a stretching of the wing and pylon chords and an 

increase in their sweep angles.  In addition, if the wing, rack, or 

store(s) is at incidence with respect to the fuselage longitudinal axis, 

the incidence angle is reduced by the factor 6.  The fuselage angle of 

attack is also reduced by this factor.  Source distributions are then 

obtained to represent the volume distributions of the equivalent fuselage, 

rack, and stores.  The vortex-lattice and source-strip distributions are 

laid out on the equivalent wing-pylon combination which is stretched in the 

chordwise direction.  Using the common fuselage coordinate system, the pertur- 

bation velocities induced by the equivalent configuration at points of 

interest in the incompressible space are calculated by considering each 

component separately and then adding up all their effects.  These incom- 

pressible perturbation velocities are then transformed back to compressible 

space using equation (2). 

In calculating the store forces and moments, these velocities are 

calculated in the region the store longitudinal axis and tail fins would 

occupy if the store were in the flow field.  This perturbation velocity 

field is then resolved into the store coordinate system. 

4.  MATHEMATICAL MODELS FOR DETERMINING FLOW FIELD 

The methods to be presented for determining the forces and moments 

acting on a store require a detailed knowledge of the flow field in the 

region of the store in its absence.  In order to calculate this flow 

field all of the components of the parent aircraft must be modeled mathe- 

matically.  It is the purpose of this section of the report to describe 

these models.  First, the flow model for the fuselage and stores is 

described.  Next the wing-pylon model is presented and finally, an 

approximate model for a rack is discussed.  All of these models are for 

the equivalent incompressible configuration. 

4.1  Fuselage and Store Flow Model 

The flow model used to represent the volume distributions of the 

equivalent incompressible fuselage and stores is the same as that pre- 

sented in section 4.1 of reference 1.  The shapes are approximated by 



axisymmetric bodies and the resulting volume distributions represented 

by a distribution of three-dimensional point sources along the body 

longitudinal axis.  The source strengths are determined in the manner 

described in reference 1. 

With the source strengths determined, the perturbation velocity 

field due to the body can be calculated.  Consider figure 1 which shows 

a right-hand  x, y, z  coordinate system fixed in the body nose with 

positive directions as shown.  Also shown are the axial and radial 

perturbation velocities at a field point, u and v  respectively, with 

positive directions as shown.  From reference 1 the expressions for 

these velocities produced by N  sources are 

Q*(x* - x*) Ek      k 
7 TVs 

r 

where 

X*   = 
X 

*R 
r* r 

=   *R  = 

Vv2   +   Z= 

u*   = u vj 
V r 

Q£ = 
Qk 

4*4V» 

(4) 

£ Qkr* x*>r*) = ;   i : WF <5) 

h [(x* - xk'2 + r*a]v 

and where £       is a reference length which for convenience will be 

taken as the length of the incompressible body.  The quantities  Q£ 
th and  x£  are the source strength and location, respectively, of the  k 

point source, and the point  (x*,r*)  designates the field point in 

cylindrical coordinates.  In resolving  v   into components in the 

y and z  direction, v and w  respectively, proper account must be taken 

of the quadrant. 



4.2 Wing-Pylon Flow Model 

In order to represent the wing-pylon combination by a potential flow 

model, two types of singularities are used simultaneously.  A three- 

dimensional vortex lattice is laid out on the surfaces of both wing and 

pylon to account for aerodynamic loadings, and a distribution of a special 

type of sources accounts for thickness effects.  The source strengths are 

proportional to the thickness envelope slopes of the wing and the pylon. 

The flow tangency boundary condition, including all wing-pylon interference, 

is applied at a finite number of points on the wing-pylon combination 

resulting in a set of simultaneous equations from which the vortex 

strengths are determined.  A Prandtl-Glauert similarity rule (see section 3) 

is used to account for compressibility. 

4.2.1  Configuration characteristics 

The configuration of interest is a wing with one pylon under each 

wing panel.  The right wing panel with pylon is the image of the left 

wing panel and pylon.  The various wing-pylon parameters included in 

the computer program are listed below. 

Wing Panels: 

Thickness distribution:  Specified at large number of chordwise 

locations and at the same number of spanwise locations as used in the 

vortex lattice which represents the wing as a lifting surface. 

Mean-camber surface:  May have both twist and camber. 

Leading-edge shape:  Up to thirty straight line segments of differing 

sweep. 

Trailing-edge shape:  Same as for leading edge. 

Taper:  Controlled by shape of leading- and trailing-edges. 

Tips:  Straight. 

Dihedral:  Variable across wing panel. 

Pylon: 

Thickness distribution:  Same method of description as for wing 

panel. 

Mean-camber surface:  Planar. 

Leading-edge shape:  Straight line which may be swept. 

Trailing-edge shape:  Same as for leading-edge except sweep angle 

may be different. 
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Taper:  Uniform. 

Tip:  Parallel to pylon root chord (pylon-wing junction). 

Orientation:  Vertical and streamwise. 

4.2.2 Vortex-lattice model 

The three-dimensional horseshoe vortex-lattice approach that is used 

to represent the wing-pylon lifting surfaces follows the methods developed 

in references 8 and 9.  In what follows, the theory and layout of the 

vortex lattice will be described first.  The flow tangency boundary 

conditions specified for the wing and pylon will show how mutual inter- 

ference due to aerodynamic loading as well as thickness effects are 

accounted for.  The theory and layout of the sources superimposed on the 

vortex lattice to account for thickness will be discussed in section 4.2.3. 

The wing vortex-lattice method used in the previous store trajectory 

work, reference 1, has been extensively modified to treat a wing-pylon 

combination as an integral unit.  The new lattice program also allows 

for breaks in wing sweep and dihedral.  Wing twist is assumed small and 

is accounted for only in the flow tangency boundary condition.  As such, 

the twist is not included in the geometry of the wing-pylon combination 

so that the wing tip is not twisted relative to the wing root chord. 

The winq and horseshoe vortex coordinate systems for a wing with breaks 

in leading and trailing edge sweep and dihedral are illustrated in 

figure 2.  Figure 3 shows the vortex-lattice arrangement for a swept 

wing with constant dihedral and pylons.  The wing panels and pylons 

are divided into trapezoidal area elements.  A horseshoe vortex is 

placed in each area element such that the spanwise bound leg lies along 

the element quarter chord and its trailing legs along the sides of the 

element.  The trailing legs are assumed to lie in the plane of the area 

element.  The area elements in each chordwise row have equal chords and 

spans.  In the spanwise direction, the area element widths need not be equal 

to allow for closer spacing where large spanwise loading gradients exist. 

For a wing with breaks in sweep, the area elements are arranged spanwise 

so that the breaks in leading- and/or trailing-edge sweep lie on the line 

formed by one of the sides of a chordwise row of elements.  A similar 

procedure is followed when there are breaks in dihedral.  The wing-pylon 



junction is also made to lie along a common boundary between two adjacent 

rows of elements.  Consequently, the trailing legs of the upper vortices 

on the pylon lie at the junction, as shown in figure 3.  The length of 

the wing-pylon junction, the pylon root chord, need not be equal to the 

wing local chord. 

On the wing, the flow tangency boundary condition should be expressed 

at the camber surface but instead it is applied at a finite set of control 

points given by the midpoint of the 3/4-chord line of each area element 

located in the wing chordal plane.  This is the planar approximation. 

The chordal plane of wing segment  i  is the plane containing the leading 

and trailing edges of the wing segment and making dihedral angle  0.  with 

the  Z = 0  plane.  On the camberless pylon, the flow tangency condition 

is applied likewise at control points situated in its chordal plane 

determined by halving the thickness envelope. 

The boundary condition states that there is no flow through the 

wing and pylon surfaces at each control point.  The condition is illus- 

trated in figure 4 for the wing.  The velocities normal to the wing consist 

of a component of the free stream, perturbation velocities  u, v, and w 

induced by the wing-pylon horseshoe vortex system, and perturbation 

velocities  u., v., and w-  induced by the distribution of sources, 

accounting for thickness superimposed on the vortex-lattice.  Velocities 

u-, v., and w.  may also include other externally induced perturbation 

velocities such as those due to the fuselage and stores.  With M control 

points on the left wing panel and  MP  on the left pylon, the boundary 

condition on the left wing panel is given by 

M 

EA   " (F cos 0  - F    sin 0 A 
«> \ v,n v,n      / 

M+MP 

y -^ Z_,  4irVrt 
n=M+!    fc \ v'n v>n 
7 .   SV   Fu     COS ^v - FV     Sln *V 

V . 
(a + a0 ) cos 0 + -*«V sin $ 

£ v   V"      ^v y oo 

/U. W.   \ 

"(~^a^  + -^-J cos 0 ; v=l,2,...M       (6) 
V   oo     V       oo / 
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The wing angle of attack is  a and a,  is the local angle of attack 

due to wing camber and twist.  Both angles are assumed small.  With the 

camberless pylon at zero incidence, the pylon boundary condition is 

written for MP control points as: 

M   p M+MP  r . v 

The right-hand side of equation (6) represents the free-stream component 

and the externally induced perturbation velocities normal to the wing 

chordal plane.  The right-hand side of equation (7) consists only of an 

external perturbation velocity normal to the pylon chordal plane since 

there is no pylon incidence.  The first summation on the left-hand side 

of the equations represents the perturbation velocities induced by vor- 

ticity on the left and right wing panels.  The second summation repre- 

sents the velocities induced by vorticity on the left and right pylons. 

The functions inside the summations will be discussed next. 

The functions  F , F , and F   are influence functions relating the u  v      w 
perturbation velocity components, induced at some point by a horseshoe 

vortex, to its circulation and the coordinates of the point relative to 

the vortex.  The relationship is obtained from the Biot-Savart law, see 

reference 10.  For example, the wash velocities at a point, induced by 

a horseshoe vortex on the wing, are 

u(x,y,z) = Jjp Fu(x,y,z,s,V,0) 

v(x,y,z) = -j^ Fv(x,y,z,s,#,0) (8) 

w(x,y,z) = -^  Fw(x,y,z,s,^,0) 

The influence functions depend only upon the coordinates (x,y,z) relative 

to the horseshoe vortex of the point at which the velocity is to be com- 

puted, and the vortex span, s, bound leg sweep angle t}/9   and wing segment 

dihedral angle, <t>. 

Consider first a vortex on the left wing panel.  The coordinate 

system is shown in figure 2.  Since the horseshoe vortex lies in the 
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chordal plane (the plane of the wing panel), the bound-leg sweep angle f 

used is the angle in the chordal plane, whereas the sweep angle is 

generally specified in the planform plane, f   .  The two are related by 
P 

the dihedral angle as 

tan ty  = tan if/    cos 0 (9) 
f 

The induced velocity is computed by integrating over the lengths 

of the two trailing legs and the bound leg.  For a horseshoe vortex on 

the left wing panel, the resulting influence functions are as follows. 

The backwash influence coefficient, positive forward, is 

Fu(x,y,z,s,^,0) 

[z  cos 0 - y sin 0) cos ji 

|x cos ip -   (y cos 0 + z sin 0) sin ip + (z cos 0 - y sin 0) 

t (x + s tan jj) sin jj + (v+s cos 0) cos jj  cos 0 + (z + s sin 0) cos ji  sin 0 

[(x + s tan ijs) 2 + (y + s cos 0)p + (z + s sin 0)2]1^2 

(x - s tan ty) sin ji + (y - s cos 0) cos j/  cos 0+ (z - s sin 0) cos j/  sin 0 I 

f(x - s tan tj/)2 + (y - s cos 0)2 + (z - s sin 0)2]1'2        J 

(10) 

The sidewash influence coefficient, positive to the right, is 
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Fv(x,y,z,s,^f0) 

-   z   sin  Tj/ +  x  cos  rjj  sin  0 

[x  cos  # -   (y  cos  0  +  z  sin 0)   sin i//\2  +   (z  cos  0  -  y  sin 0)2 

e x + s   tan ?/Q sin # + (yis  cos  0) cos  #  cos  0 + (z + s   sin  0) cos  ^/  sin  0 

|(x  +   s  tan  i}/)2  +   (y  +   s  cos  0)2   +   (z  +   s   sin  0) 1/3 

(x - s tan TJ/) sin ^+ (y - s cos 0)cos ji  cos 0 + (z - s sin 0)cos ji  sin 0 I 

|(x - s tan #)2 + (y - s cos 0)2 + (z - s sin 0)2]1^2       >/ 

.  (z - s sin 0)  

(y - s cos 0)2 + (z - s sin 0)2 

C        (x - s tan ijj) 

\ [(x-s tan f)2 +  (y - s cos 0) 2 + (z - s sin 0)2J 1/2 

(z + s sin 0) 

(Y + s cos 0)p + (z + s sin 0) 

9f[   _  (x -4- s tan ip) "^ 

1    [(x + s tan f) 2 + (y + s cos 0) 2 -»- (z + s sin 0) 21 *'2J 

The downwash influence coefficient, positive downward, is 

F (x,y,z,s,#,0) 

(11) 

- x cos jj  cos 0 + v sin j) 

x cos ^ - (y cos 0 + z sin 0) sin ip\2  +   (z cos 0 - y sin 0)2 

(? (x + s tan j/) sin ji + (y + s cos 0) cos ijj  cos 0 + (z + s sin 0) cos ji  sin 0 

[(x + s tan I/)2  + (y + cos 0)2 + (z + s sin 0)2]1//2 

(x - s tan il/) sin # + (y - s cos 0)cos ^ cos 0 + (z - s sin 0)cos ji  sin 0 1 

l(x - s tan ty)2  + (y - s cos 0)2 + (z - s sin <t>)2\ J 

 (y - s cos 0)  

(y - s cos 0)2 + (z - s sin 0)2 

(Continued on next page) 
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9 fi   __   (x   -   s   tan  j,)  | 

^        [(x-s  tan if/)2 + (y-s  cos  0)^ + (z - s  sin <t>)2]1/'2J 

 (y  +   s  cos  0)  

(y  +   s   cos  0)2   +   (z   +   s   sin  0) 

mfx   _  (x  +   s   tan  jf)      I 
(^ I (x + s  tan Tf/) 2 + (y + s  cos  0) 2 + (z + s   sin 0) 2| 1/2>/ 

(12) 

For the case of unyawed vortices, f =   0 , the influence coefficients 

given above degenerate to the equations given by Blackwell, reference 11. 

Once the influence coefficient for the vortex on the left-wing panel 

is obtained, the coefficient for the vortex at the image position on the 

right-wing panel can be obtained by changing appropriate signs in 

equations (10) through (12) and by taking into account the change in the 

y  coordinate.  Thus, for both wing panels, 

Fu = Fu(x>yrz>s'^>0) + Fu(x'yr>z's'~^'"~0) (13) 

where the first term is the left panel vortex contribution and the 

second term the right panel contribution.  The same transformations 

hold for  F  and F . v     w 

In similar fashion, the contributions of the vortices on the pylons 

can be obtained from the left wing panel expressions.  Thus, for the 

pylons 

Fu = Fu(x'yrz's»^>0 = ~7r/2) + Fu
(x>yr>Z'S'"^'0' = 7r/2)    (14) 

where the first term is the contribution of the left pylon, which has 

a "dihedral angle" of -TT/2, and the second term represents the right 

pylon contribution.  The same transformations again hold for  F  and F . 

Equations (6) and (7) represent a set of M+MP  simultaneous 

equations in which the unknowns are the M+MP  values of circulation 

strength  r.  Therefore, the values can be obtained through a matrix 

solution for a given angle of attack and a specified set of externally 
ui  vi  W-: 

induced perturbation velocities —, —, —*> caused by wing and pylon thick- 
OO      00     00 

ness effects or from additional external sources such as fuselage, rack and 

stores. 
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4.2.3  Thickness model 

The three-dimensional source method used to account for wing and 

pylon thickness is known as the spanwise source strip method and is 

quite similar to that used by Fernandes in reference 12.  The wing will 

be dealt with first.  The coordinate system and angle convention used in 

connection with the theory and layout of these source strips is shown 

in figure 5 for the left wing panel with specified thickness envelope. 

It is noted that this coordinate system is the same as the one used for 

the vortex-lattice method, figure 2.  The incompressible velocity potential 

due to a surface with chord | X, - X | and span | Y, - Y |  shown in 

figure 5 on the wing may be obtained from reference 13 or 14 with a 

simple coordinate transformation.  The result is 

A    .    fa        r
Ya tan 0. dXx dYx M = A.     I        I      1—; ;        (15) 

-   27T  J     J 

*b   Yb 
V (Xj. - X)2 + (Y - Y1)

2   +    (Zx - Z)2 

for a surface located at Z1   = constant  and with local incidence angle 

0  measured from the positive X  direction, see figure 5.  The inte- 

grations are performed over the span and chord of the surface and 

coordinates  X,Y,Z  locate the field point at which the velocity potential 

is determined.  To simplify the integrations, spanwise strips are arranged 

on the wing such that inclination angle  0   is approximately constant. 

These strips are swept with the wing and have much smaller chord than 

span dimension.  Then the Xx  coordinates of points in the narrow strip 

are approximated by 

Xj = Xc + Y-L tan \± (16) 

where  ?v.  is the sweep angle measured from a direction parallel to the 

positive Y-axis, see figure 5, and  X   is the value of Xx when Yx 

is zero. 

The integral then simplifies to 

M = 
tan 0tAX.      rYa dYx >tAXi     f 

" J 
Yb 

V(Xc   +  Y1   tan   Xi   -  X)2   +    (Y   -  Y±)
2   +    {Z1   -  Z)? 

(17) 
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where AX. = X  - X,.  Note that X  and X,  as shown in figure 5 are 

negative.  The integration can be performed and noting that  A. ■ 180° + #. 
and  tan 0. = -tan Q  « -0, the velocity potential due to one strip with 

span | Y, - Y |  at  Zx  equals 

AA  ÖAX.       r At . __i cos fi  U Y(Xc + Ya tan ip±   - X)2 + (Y - YQ)2 + (Zx - Z)* 

cos ^. - + (X - X ) sin #. +Y cos # J 
- *n [ V <XC + Yfe tan f.   - X)» + (Y - Yb)» + (Zl - Z)» - ^_ 

+ (X - X ) sin T//. + Y cos #. 
c      T l r 1 

(18) 

where on the left wing panel Y  and Y,  are negative.  Differentiating 

with respect to X,Y,Z  to obtain the perturbation velocities due to one 

strip results in the following expressions: 

ÖAX. 
v«  ^X \V«J   2TT  

COS *i 00 *  00 / 

( 

-(Xc - X + Ya tan V^) + B sin ^  - (X  - X + Y. tan f 

AB CD 
L)   + D sin ^"^ 

/M\   9AXi        fY - Y  + B COS »i   Y - Y  + D COS »■ ^ 
($!) = ~ COS *i(_ ÄB CD j V„   dY 

- Z)   -(Z, - 

CD   J 

(19) 

where 
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A = V(x^ - x + Y=> tan TP^2   + (Y - Y J2 + (Z, - Z)2 
*   C 3 1 a x 

"\ 

COS if/. 
- + (X - X ) sin f.+Y  cos ^. 

■  V<*c - B - V(X_ - X + Y  tan Tj/.)z   +   (Y - Y )2 + (2, - Z) 
C 3        1 3 

= v^T7" X + Yb tan ^L)2   + (Y - Yb)
2 + (Zx - Z) 

cos #. - + (X - X ) sin ^ + Y cos f. 

D = Y(Xc - X + Yb tan tf/..)2 + (Y - Yfc)
2 + (Zx - Z)2 

(20) 

-/ 

Similar expressions can be derived for the corresponding source strip on 

the right wing panel.  The resulting expressions are identical to 

equations (19) snd (20) except th3t Y  snd Y,  are interchanged, since 

Ya  is still the inbosrd side of the strip, snd  tan f.      is replaced 

by  -tan t//.     and  cos ip.      is replsced by  -cos ip. .     On the right wing 

psnel  Ya and Yfe  are positive.  At a field point (X,Y,Z) the pertur- 

bation velocity components ^-, ^-, ^- induced by wing thickness are 

then given by equations (19) and °?20) °°summed over all wing source strips 

on both the left wing panel and right wing panel. 

The coordinate system and angle convention used with the pylon 

thickness model is shown in figure 6.  This coordinate system is also 

the same as the vortex-lattice coordinate system.  Analogous to the 

wing thickness model, the incompressible potential due to a surface at 

Y = constsnt  snd with chord | X, - X |  snd span | Z, - Z |  may slso 

be obtained from reference 13 or 14 with a simple coordinste transfor- 

mation.  With the local incidence angle  0p  measured from the positive 

X-direction, the result is 

V    " 2TT HC 
tan 0  dZ, dX, 

V(XX - X)2> (Yj. - Y)2 + (Zx - Z)2 
(21) 
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The integrations are performed over the span and chord of the surface 

and coordinates  X,Y,Z  locate the field point at which the velocity 

potential is determined.  As was done on the wing, spanwise strips are 

arranged on the pylon such that angle  0p.  is approximately constant. 

The strips are swept with the pylon and have much smaller chord than 

span dimension.  In terms of the coordinate system indicated in figure 6, 

the wing coordinate system, the X-coordinates of the narrow strip are 

given by 

X, = X   + Z, tan X 1    p     l      p. (22) 

where sweep angle  Ap.  is measured from the positive (downward)  Z-axis, 

positive for forward sweep.  With the assumption of narrow strips and 

for a pylon located at Yx = Y , equation (21) simplifies to 

M . 
tan 0 AX, 

V 21T J 

dZ 

V(X   + Zx tan *   - x)2 + (Y  - Y)2 + (Zx - Z)2 

(23) 

AXi 
X  - X, .  Since  tan 0D. = tan (180  - Q   )   « -6       and 
a   D "t p     y where l    a    fc> rFt p'     p 

^p. = -tp-,   see figure 6, the velocity potential due to one strip on the 

pylon is then given by 

Acft   0AXi        f 
V = ~~2~ COS ^i y,ri /(X   - X - Z  tan *.)2 + (Yn - Y) 

2 + (Za - Z) w  Pc        a      l       p a 

+  a-— - (X   - X) sin -df.   -  Z cos #. 
cos ^/.     p *i yi 

- in -\/(Xp - X - Zb tan ipr)*  + (Yp - Y)
2 + (Zb - Z) 

+ ,P , (X   - X) sin f.   - Z cos #. 
cos #•     P i i r 1     rc 

(24) 
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Differentiating with respect to X,Y,Z  yields the perturbation velocities 

induced by one spanwise source strip on the pylon.  The results are 

0AX. 

r-X       + X + Z  tan ib.   + F sin ib. 
p        a     *i        *i 

Av 
V 

EF 

9AXi        f-Y  + Y   -Y H 

T5T COS *i S  PEF   " "^GH 

-X  + X + Z, tan tb.   + H sin ^. 
Pc       b     *i 

GH 

Aw _ °**i 
V 

where 

— cos yL 

-Z  + Z - F cos ib. -Z, + Z - H cos ib. 
a r i    b ri 

EF GH 

(25) 

=v^ - X - Z  tan ib.)2   + (Y  - Y)2   + (Z a     *i'      p a - Z)2 + cos ^. 

- (X   - X) sin ip,   -  Z  cos V- 

II 

= "v/(Xp " x " za 
tan ^iP + (Yp " Y)2 + (Za " Z)2 ^ <26> 

- Y(xpc - x - zb tan ^i)2 +  (Y
P - Y)2 +  (zb - z)2 + 35T?7 

-   (X - X)   sin  ip.   -  Z  cos  #. 
*c 

= -W(Xp -  X  -  Zb   tan  ^)2   +    (Yp  - Y)2   +    (Zfe  -  Z) * 
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At a field point (X,Y,Z) the perturbation velocity components induced by 

pylon thickness are then given by equations (25) summed over all pylon 

source strips on both left and right pylons.  The specification of the 

Y   coordinate determines which pylon is accounted for. 

In connection with the flow tangency boundary conditions, equations 

(6) and (7), perturbation velocities induced by the thickness envelopes 

of the wing and pylons are computed at the control points associated 

with the vortex lattice area elements on the wing-pylon combination.  In 

general, these velocities are obtained by adding the result of summing equa- 

tions (19) over all wing source strips to the result of summing equations (25) 

over all pylon source strips.  The final sums are then added to the set of 

externally induced perturbation velocities  u./V^, v./Va, 
wi/Voo tnat 

appear in the flow tangency boundary conditions.  In this way, all inter- 

ference effects induced by the wing on the pylon and vice versa are 

accounted for and will be reflected in the resulting circulation strength 

distribution on the wing-pylon combination. 

4.3  TER or MER Rack Flow Model 

The remaining aircraft component to be modeled is the rack used for 

multiple carriage of stores such as a triple ejector rack, TER, or a 

multiple ejector rack, MER.  A wind-tunnel model of a TER rack is shown 

in figure 7.  This can be approximated by an axisymmetric body to which 

are attached three short pylons.  The model used in the present work for 

modeling racks of this type is one which accounts only for the volume 

distribution associated with the axisymmetric body portion of the rack. 

This is represented by a distribution of three-dimensional point sources 

along the longitudinal axis.  The source strengths and perturbation 

velocities are determined in the same manner as described in 

section 4.1 for the fuselage and stores. 

The short pylons have been neglected in the present work.  Their 

effect could be included, however, it has not been done.  The importance 

of neglecting these short pylons will be discussed in section 7.2. 

FORCE AND MOMENT CALCULATION 

The calculation of the trajectory of a store dropped from an air- 

craft requires a knowledge of the forces and moments acting on the store 

at each point in the trajectory.  In order to calculate these forces and 
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moments, the nonuniform velocity field in which the store is immersed, as 

seen by the store, must be determined at each point in time.  This field 

includes the free-stream velocity, the perturbation velocities induced by 

the parent aircraft, and the angular velocities due to the store's pitch, 

yaw, and roll motions.  The distribution along the body axis is required 

in order to calculate the forces and moments acting on the body and, if 

an empennage is present, the distribution over the tail fin surfaces is 

required for the empennage force and moment calculation. 

This section will first describe the calculation of the velocity 

field utilizing the flow models of section 4.  Following this the 

methods employed to calculate the body and empennage forces and moments 

from this nonuniform flow field will be presented. 

5.1  Calculation of the Velocity Field Including Damping 

The  x , y , z   coordinate system to be used in the force and 
s   s   s 

moment calculations is shown in figure 8.  It is fixed in the store with 

the origin at the store nose with the velocities  U , V , and W s   s      s 
positive in the directions shown.  These are the total velocities as 

seen by a point on the store and each is composed of a free-stream component, 

a perturbation component due to the parent aircraft, and a damping 

component due to the store's rotational motion. 

Before writing the expressions for these velocities let us examine 

figure 9 which shows the coordinate systems used in the trajectory 

calculation.  The equations of motion will be presented in section 6. 

Two coordinate systems are shown in figure 9.  The  £,n,,£  system is an 

inertial system fixed in the aircraft which is in rectilinear flight at 

uniform velocity.  The positive £  axis is forward along the fuselage 

longitudinal axis, the  T)  axis is positive laterally to the right, and 

the  £  axis is positive downward perpendicular to the fuselage longi- 

tudinal axis.  The origin of this system is fixed in the fuselage nose. 

The  x, y, z  coordinate system is fixed in the store with the 

origin at the store moment center.  Referring back to figure 8, the  x- 

axis lies along the store longitudinal axis but is positive forward. 

The  y-axis is parallel to the  y   axis and positive in the same 
9 

direction and the  z  axis is parallel to the  z   axis but positive 

downward.  The x, y, z  system shown in figure 8 is a right-hand system 

and the store angular velocity components about the three axes are p, i, 

and r  respectively. 
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In figure 9 the origins of the two coordinate systems have been 

drawn to coincide in order to show the angles used to determine the orien- 

tation of the store with respect to the inertial (^,T),^) axes.  The 

system of angles chosen consists of three rotations in the yaw, ¥; 

pitch, 6; and roll, <t>; sequence (ref. 15).  The two coordinate systems 

are then related by 

■ 0] (27) 

where 

M- 

cos 9 cos ¥  sin <t>  sin 9 cos ¥ cos <t>  sin 9 cos Y 
-cos <t>  sin ¥ + sin 0 sin Y 

cos 9 sin Y  sin <t>  sin 9 sin Y cos <t>  sin 9 sin Y 
+cos * cos Y -sin $ cos Y 

-sin sin $ cos 6 cos <S>  cos 9 

(28) 

The three velocity components, U , V , and w , are 

^ 

U = U     + u S     oo s 
s>xs 

s    oo        s      s    s, m ' 
s,yG 

W = W     + w + q(x  - x s   oo       s   MV s    s,m' s.z ' ' s -^ 

(29) 

The first term on the right side of the equal sign in each of the above 

expressions is the component of the free-stream velocity vector.  If the 

parent aircraft is moving at velocity, V , and flying at angle of attack, 

af, then the velocity of the inertial coordinate system relative to a 

point in space is 
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Voo   ■    Vco   COS   afep    +    Voc    Sin   afe
C 

(30) 

The velocity of the store moment center relative to the moving inertial 

system is 

v " iet   +   T\e     +  £e- 

so that the velocity of the store relative to a point in space is 

?   = v + v 
oo     oo    m 

(31) 

(V cos af + £)e. + ne 

+ (V sin a. + C)e, (32) 

Since the velocity components needed in equation (29) are those as seen 

by a point fixed in the store and moving with the store, equation (32) 

becomes 

^oo = " <v« cos af + V**   - T) "e_ 

- (Vw sin af + C)e^ (33) 

The components in the  x, y, z  coordinate system of figure 8 are then 

U 

V 

s.x 

s,y 

k. oo   —I 
s,z 

M' 

- (VM cos a. + £) 

- n 

-T 'Voo Sin af + O- 

(34) 

where  [AJ   is the transpose, or inverse since  [A]  is orthogonal, of 

the matrix given in equation (28).  These velocity components are related 

to those in the coordinate system of figure 8 by 
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u     ■ - U_     ^ 
,xs      s,x 1 »• 

V     = v 
00 00 

s,Ys     s,y 

w    = - w 
00 00 
s,zs       s,z 

(35) 

The second term in the three expressions of equation (29) is the 

perturbation velocity term.  This is comprised of the perturbation velo- 

cities induced by the fuselage, wing, pylon, rack and other stores and 

is calculated by the methods presented in section 4.  It is to be remem- 

bered that these methods apply to the equivalent incompressible configu- 

ration.  At each point in the trajectory the points at which the velo- 

cities are required must be located in the incompressible space.  The 

perturbation velocities induced by the fuselage, rack, and store volumes 

are calculated using equations (4) and (5), those induced by the wing- 

pylon vortex lattice are determined by equation (8) by summing over 

all vortices, and those induced by the wing and pylon thickness distribution 

are obtained from equations (19) and (25) by summing over all thickness 

strips.  The velocities calculated using these equations are in the coor- 

dinate system of each aircraft component.  Prior to transforming these 

back to the compressible space they must be summed up in the fuselage 

coordinate system since this is the coordinate system in which the 

compressibility correction was applied.  This system is the (£,TJ,£) 

system of figure 9. 

Let  u' , v', and wi  be the sums in the  r,Tj, and £  directions 

respectively.  Then from equation (2) the compressible perturbation 

velocities are 

u'        v *       w • 
"! - §1 . \  - -g  . wc - f (36) 
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The velocity components in the x, y, and z  directions of figure 8 

are 

u 

w 

-[*]• 

u. 

V 

Lw„ 

(37) 

and, finally, the components in the coordinate system of figure 8 are 

u = -u, v = v. w -w (38) 

In calculating the velocity field for the case of a store released 

from under the fuselage the presence of the wing is ignored for the 

reasons discussed in section 5.1 of reference 1.  The arguments presented 

there apply to the present case even though the configuration is more 

complicated.  Fuselage angle of attack effects are included for this 

case and given by 

w. V  sin 
00 v [l - (?)'} (39) 

where w-'  is the velocity normal to the fuselage axis in the incom- 

pressible space a distance  £'  from the axis, a  is the local fuselage 

radius, and af'  is the fuselage angle of attack in the incompressible 

space.  This velocity field is added to the pylon-induced and volume- 

induced velocity fields.  Equation (39) is obtained from the complex 

potential for a circular cylinder in uniform flow given on page 29 of 

reference 16.  For stores under the wing this velocity is not included 

in the perturbation field for reasons which are also discussed in 

section 5.1 of reference 1. 

The last terms on the right side of the expressions for V and 

W   in equation (29) are the yaw and pitch damping terms.  The positive 

directions of the rotational velocities are shown in figure 9.  it can 

be seen that  r  is positive for nose-to-the-right motion and  q  is 

positive for nose-up motion.  The means of accounting for roll damping 

will be discussed in the section describing the empennage force and 

moment calculation, section 5.3. The rotational velocities, p, q, and r, 
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are determined as a function of time during the integration of the equations 

of motion. 

The velocities to be used in the force and moment calculations are 

made dimensionless by the store free-stream velocity.  Thus, equation (29) 

becomes 

U 
U* = TT-

3
- = V*    + u* s   V      oo        s 

<»        S,X 

V r(x  - x , )  v 

S    V oo         Vs          V 
oo S . V                    °° 
S ' J S                                                     S 

W q(x  - x , ) 
W* = 77^- = W* + w* +  2—r, £JS_ 
S   V      oo s V        J 

oo        s. Z °° 
S        '  S S 

(40) 

where from equation (32) or (33) 

V =    [(vw cos af +  i)2 +   'jf  +   (v^ sin af +  i)2]1 /2 (41) 

At any point in time during the trajectory the forces and moments are 

determined by removing the store from the flow field, determining the 

velocities at a series of points which the store longitudinal axis and 

tail fins occupied, and then immersing the store in this flow field. 

5.2  Body Forces and Moments 

The store body force and moment calculations have not changed 

significantly since reference 1.  Slender-body theory is the basis for 

calculating the body normal-force and side-force distributions which 

yield forces and moments.  A simplified method of calculating the buoyant 

force has been introduced which eliminates the necessity of calculating 

the lateral and vertical pressure gradients and speeds the computation. 

As in reference 1, when large values of the combined angle resulting from 

upwash and sidewash occur, such that the body boundary layer separates, 

the slender-boc'y theory calculation is not continued.  Simple viscous 

crossflow theory is used downstream of the separation location. 
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5.2.1  Buoyancy forces and moments 

In the work of reference 1 the buoyancy normal-force distribution 

was determined from the vertical pressure gradient acting on the body. 

This required the calculation of the velocity field not only along the 

body longitudinal axis but also along the upper and lower surfaces of 

the body.  In the present work the buoyancy side-force distribution is 

also required which would necessitate calculating the velocities along 

the two sides of the store as well.  Since calculating the velocity field 

at five points at each axial station would be very time consuming, 

a simplified method for calculating the buoyancy forces and moments has 

been adopted which yields comparable accuracy. 

This simplified method was discussed in reference 1.  There it is 

shown that if it is assumed that the flow in planes perpendicular to the 

axis of the store obeys Laplace's equation and that the upwash and 

sidewash velocities vary along the store length, and the potential is 

constructed on this basis, then integration of the body pressures obtained 

from the unsteady Bernoulli equation yield both the buoyancy forces and 

the slender-body forces.  The final expression for the buoyancy normal- 

force coefficient is given by equation (63) of reference 1.  The derivation 

is carried out in Appendix I of that reference with the final expression 

which contains both the buoyancy and slender-body terms given by 

equation (1-14). 

The expressions which have been used in the present work to calcu- 

late the buoyancy normal-force and side-force coefficients, derived in 

this manner, are 

^s   dW* o_  r  s    aw- 

and 

's   dV* 

Y BY   bR J s 
dx (43) 

BY   ~R J —s o 

The expressions for the pitching-moment and yawing-moment coefficients, 

with the moment taken about x     (see fig. 8), are 
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's dW* 
c2?- J       (xe m - xj a* ^< 

'm BY   SRi?R J     s,m    s     dxs o 

and 

9-rr  r  s övt 
(C )   = -^ /   (x    - x ) a2 -r-2-  dx n BY   VR J S»m    S     dxs 

(45) 

5.2.2  Slender-body forces and moments 

The slender-body forces and moments are determined in the same 

manner as described in section 6.2.1 of reference 1.  The derivation will 

not be repeated here.  The expressions for the forces and moments, from 

that reference are 

,,    _ irr  rXs>° 
'N SB "" SR I 

,0  \ 

o 

r
Xs,o r  s>( 

■^7-     J ,-xp 'm SR    SP^P   J S»m      S   dX« S      S 
o SB    R"R 

(Cn}    ■ O^T"   I '   <X     - XJ  H6" (a2 V«)  dx<= n SB   VR J s,m    s  dxs      s    s 
(49) 

The upper limit on the above integrals is the assumed separation location, 

that is, the point at which viscous forces become important. 

No definite rules for the selection of a value of  x    can be s,o 
given.  For stores with cylindrical afterbodies x    should probably 

be taken as  i7 , the store base.  For stores with boattailed afterbodies 
s 

x     should probably be less than  / .  A further discussion is given s, o        F * s 3 

in sections 6.2 and 8.2 of reference 1.  In that discussion the work of 
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Hopkins (ref. 17) is mentioned.  In this work he correlated, for bodies 

of revolution in uniform flow, the maximum extent of applicability of 

potential flow as a function of the location of the maximum negative rate 

of change of body cross-sectional area.  From that reference 

x x 
-y^ = 0.378 + 0.527 -y^ (50) 
's ls 

where  x   /f        is the location on the body where potential flow is no 

longer applicable and viscous forces are important and  x  /Ü   is the s, 1  s 
location on the body of the maximum negative rate of change of cross- 

sectional area.  Whether or not this correlation applies to nonuniform 

flow is not known but it can be used in estimating the value of x 
DAW 

5.2.3  Viscous crossflow forces and moments 

From the assumed separation location to the base of the store a 

viscous crossflow calculation is used in place of the slender body calcu- 

lation.  The expressions for normal force and pitching moment are derived 

in section 6.2.2 of reference 1.  The expressions for side force and 

yawing moment are derived in a similar manner.  The expressions for the 

two forces and two moments are 

2cd     is 

(CN>   - ^f       f      aVc Ws dxs (51) 

CF     R 

d    /- s 

CF     R / ' -c* (CY)   = -g-S.  /   aV* V* dxs 
Xs,o 

d     r   S 

CF 

f 
(C )   = -zr-r- (x   - x ) aV* W* dx (53) m 

x 

2cd     A 
(C"'CP = v; J   ^."-^ avc vsdx

s <54> 
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where 

;c=y< V* - -\/(V*)2 + (W*)2 (55) 

and c$        is the section-drag coefficient of a cylinder normal to the 

free stream.  That is 

drag per unit length 
Cdc 

=      q«, (2a) 
S 

5.3  Empennage Forces and Moments 

A method of calculating the forces and moments associated with 

planar or cruciform empennages will now be presented.  It has been noted 

from experimental data that the variation in flow velocity normal to the 

empennage panels varies very little in the chordwise direction, for fins with 

small chords, as compared to the spanwise direction.  Accordingly, the effec- 

tive shape of the empennage panels is essentially that of pure twist with zero 

camber.  For such panels, it is possible to calculate the empennage forces using 

reverse-flow theorems.  The net force generated by a panel, including that 

carried over onto the store body, can be obtained in terms of an integral, 

across the span of the panel, of the product of the twist angle times 

an influence function which corresponds to span loading of an associated 

empennage in uniform reverse flow.  Influence functions have been derived 

for calculating empennage normal force, side force, pitching moment, 

yawing moment, and rolling moment for planar and cruciform empennages. 

For cruciform empennages panel-panel interference has been accounted for. 

Complete mathematical details of the method are contained in Appendix I. 

A crossflow plane in the empennage region is shown in figure 10 

for a cruciform empennage.  The tail fins are numbered Flt   F2, F3, and F4 

such that, for a planar empennage, fins  F3 and F4 are not present.  This 

crossflow plane is the plane in which the empennage forces are assumed to 

act and will be taken as that which contains the quarter chord of the 

mean aerodynamic chord of the exposed panels.  In the present work all of 

the fins will be assumed to have the same planform. 

The  x~, yf, 2.. t coordinate system is fixed in the tail fins such 

that the  xf, yf  plane contains the horizontal fins and, in the case 

of a cruciform empennage, the  xf, zf  plane contains the vertical fins. 
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This coordinate system is rolled an angle  <£f  from the  x , y , z 
J. s    s    s 

store body coordinate system of figure 8.  Both coordinate systems move 

with the store during the trajectory.  In the trajectory calculation the 

x , z   plane is assumed to be parallel to the  £,£  plane in the inertial 
s   s 

system (see fig. 9) at time  t = 0  seconds.  Thus, the specification of 

the angle  <£f  allows a trajectory to be started with the fins in other 

than the vertical and horizontal positions. 

Also shown in figure 10 are the velocities required for the empennage 

force and moment calculation.  The arrows indicate the positive directions. 

The velocities on each fin are required at  n  equally spaced points 

between the body radius and the tip of the panel.  The coordinates of 

the points are  (i = l,...n) 

F2:  yf>i 

F3:  z 

a + {ir^T{- (sh- a>; zf,i= ° -\ 

=  -a  -   (i  -  1) 
(n  -  1)    v~h - a>; zf,i ■ o 

=   -a  .-tL=4J tn-^[t (sv- a)> yfii- ° 

F<:   zf,i  "   a +   In  I  1) :sv "  a) ;   y 
f,i 

=   0 J 

(56) 

The x  location of all points is the same, that is, the axial location 

of the quarter chord of the mean aerodynamic chord, if  in figure 8.  In 

calculating the velocities normal to the fins the coordinates of the points 

given by equation (56) are first transformed to the store body coordinate 

system, the  x , y , z   system, and then the velocities in this system 

are calculated as described in section 5.1.  These velocities are given 

by equation (29) and include the store translational motion as well as 

the yaw and pitch rotations.  The velocities normal to the fins are then 

obtained by summing up the components of W  and V  normal to the fins. 
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W, = W cos (b-  + V  sin 0,. 1    s    ^f    s     ^f 

> (57) 

W9 = W  cos <hc  + V  sin A,. 2    s     ^f    s     vf 

Vx = -W  sin 0,. + V  cos 0 

VP = -W  sin 0^ + V  COS 0,-^ *     s      f    s     ^f 

The equations presented in Appendix I determine the forces and 

moments produced by the empennage in the  xf, yf, z.     coordinate system 

of figure 10.  The force given by equation (1-13) is positive in the  zf 

direction and the force given by equation (1-18) is positive in the  yf 

direction.  The moment given by equation (1-21) is positive nose up about 

the  yf  axis and that of equation (1-22) is positive nose to the right 

about the  z£  axis.  Since the x,. and x  axes coincide the rolling f f     s 
moment expressions, equations (1-30) and (1-52), apply to both coordinate 

systems and the positive sense is right wing down. 

In the store body coordinate system, which is the system the forces 

and moments must be in for the trajectory calculation, the normal-force 

and side-force coefficients are, from equations (1-13) and (1-18), 

(CN)  - cos #£ [(Cz)   - (CZ> ] 
BH       B f 

- sin 0  [(C)   - (C ) 
Y BV     * BJf (58) 

(Cv)  = sin 0  [(C)   - (C ) 
Y E        f L Z BH     Z BJf 

+ cos 0  f(Cv)   - (C ) (59) 
r    * BV       B f 

Similarly, from equations (1-21) and (1-22), the pitching-moment and 

yawing-moment coefficients are 

*f [(Cm>   - (Cm»J (C )  = cos 
m E        "  k tM BH     " B" f 

- sin 0. f(C )   - {C) (60) 
f l %V     n BJf 
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(C )  = sin 0  [(C)   - (C ) 
n _       f I m       m _J BH     " BJf 

+ cos 0- [(C)   - (C ) ] (61) 
f L  n BV     n BJf 

The rolling-moment coefficient for a planar empennage is given by equa- 

tion (1-30) 

(C.)  - (CJ (62) 
1   E     l  H 

and that for a cruciform empennage by equation (1-52) 

(CJ  = (C.) (63) 
1   E     l  HV 

6.  CALCULATION OF STORE TRAJECTORIES 

In the preceding sections of this report, methods have been presented 

for modeling the various aircraft components, for calculating the non- 

uniform flow field due to the aircraft, and for calculating the forces 

and moments acting on a store immersed in this flow field at any location 

relative to the aircraft.  Utilizing these tools a computer program has 

been written which integrates the equations of motion of the store to 

determine its location and orientation relative to the parent aircraft as 

a function of time.  In the work of reference 1, this motion was restricted 

to three degrees of freedom.  In the present work the equations of motion 

allow six degrees of freedom. 

In this section of the report the equations of motion will first be 

discussed and then the computer program will be described. 

6.1  Equations of Motion 

The complete derivation of the equations of motion of a rigid body 

with mass and inertia asymmetries is presented in Appendix II.  Generally 

the body, a store in the present application, will have axes of geometri- 

cal symmetry about which the store forces and moments are determined.  By 

mass asymmetry it is meant that the store center of mass does not have to 

lie at the origin of this coordinate system.  By inertia asymmetry it is 

meant that the principal axes of inertia of the store do not coincide 
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with the geometric axes of symmetry so that the tensor of inertia possesses 

off-diagonal terms, the products of inertia. 

In the derivation of Appendix II the two coordinate systems discussed 

earlier in conjunction with the velocity field calculation, section 5.1, 

are used.  They are shown in figure 9.  The x, y, z  coordinate system 

is fixed in the store and rotates with the store.  The  x-axis lies along 

the store longitudinal axis and is positive forward, the y-axis is posi- 

tive to the right, and the  z-axis is positive downward.  These axes coin- 

cide with the geometric axes of symmetry with the origin at the point about 

which the moments and products of inertia and the aerodynamic moments are 

calculated.  The equations of motion are derived in this coordinate system 

since, by allowing the coordinate system to rotate with the store, the 

time derivatives of the moments and products of inertia do not appear in 

the rotational equations of motion.  The equations of motion in this 

coordinate system are given by equations (11-15) and (11-40) of 

Appendix II. 

Since the store coordinate system in which these equations of motion 

are written does not allow the store position and orientation to be deter- 

mined relative to the parent aircraft, a coordinate system is introduced 

which is fixed in the fuselage nose, the  I» , r|, £  system of figure 9.  In 

the present work it is assumed that the parent aircraft is flying at 

constant velocity, constant angle of attack, and constant flight path 

angle relative to the horizontal so that this system is a non-rotating 

system.  As such, it can be regarded as an inertial system and the store 

motion relative to this moving system calculated. 

The  £, rj, £  system if fixed in the fuselage nose with  £  forward 

along the fuselage longitudinal axis, rj  laterally to the right, and  £ 

vertically downward.  In order to determine the orientation of the store 

with respect to these axes, a system of angles must be introduced.  These 

angles are also shown in figure 9 and consist of three rotations in the 

yaw, Y; pitch, 9; roll, <J>; sequence.  In order to determine the time 

histories of these angles differential equations expressing them as a 

function of the store rotational velocities, p, q, and r, are required. 

These are given by equation (II-l) of Appendix II.  The rotational 

velocities, p, q, and r, are shown in figure 9.  The velocity about the 

x-axis is  p  and is positive right-wing down.  Those about the  y- and 

z-axes are  q and r  respectively and are positive nose up and nose to the 

right. 
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The final differential equations which are to be integrated to 

determine the store position and orientation relative to the inertial 

system fixed in the fuselage are equations (II-l), (11-16) through (11-18), 

and (11-41) through (11-43).  The latter six equations are obtained from 

equations (11-15) and (11-40) by using the direction cosines relating 

the two coordinate systems, equation (II-2) .  In the equations, £, TJ, and 

£  are the accelerations of the store moment center, the point about 

which the moments and products of inertia are taken, in the inertial 

coordinate system.  The velocities in this system are  £, rj, and £  and 

the quantities  x , y , and z   are these velocities resolved into the 

store body coordinate system.  That is 

x. 

w 
: 

K 

(64) 

where  |A|   is the transpose of the matrix given by equation (II-2) . 

The location of the store center of mass relative to the store moment 

center in store body coordinates is  x, y, z.  The three rotational velo- 

cities in the store body coordinate system are  p, q, and r  and the 

corresponding accelerations are p, q, and r.  The quantities  1,1, 

and I    are the moments of inertia and  1,1, and I    are the zz yz»  xz»      xy 
products of inertia.  They are defined by equation (11-36). 

The remaining parameters in the equations of motion are the store 

mass, m, and the forces, F , F , and F , and moments, M , M , and M , 

acting on the store which are positive in the positive  x, y, z, p, q, 

and r directions respectively.  The three forces are 

F = mg  - a  S„C„ x   ^x   ^ R A s 

*V ■ «*y 
+ q. sRcY v 

F = mg - a S„C„ z   ^z   ^»     R N 

(65) 
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In these equations 

acceleration vector 

following sketch 

x 
are the component of the gravitational 

in the store body coordinate system.  Consider the 

g , and g„ 
y 

Fuselage 

which shows the fuselage flying at velocity V^, angle of attack af, 

and flight path angle yf.     The gravitational force acts normal to the 

local horizontal so that in the inertial coordinate system 

g = -g sin (af + yf)e. + g cos (af + yf)e. (66) 

Then 

-H 
~-g sin (af + 7f) 

g cos (af + yf) 

(67) 

The second terms in equation (65) are the aerodynamic forces acting 

on the store.  The axial-force coefficient, C , is specified and is posi- 

tive in the negative x  direction.  The sideforce and normal force 

coefficients, C  and C , are calculated by the methods described in 

section 5 and are positive in the positive y and negative  z  directions 

respectively.  These coefficients are the sums of all of the components 

calculated in section 5.  For example 

CN " (CN)   + (CN}   + (CN)   + (V W       BY     W SB     W CF     W E 
(68) 
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The parameters  q^  and S   are the dynamic pressure and reference area 

used in nondimensionalizing the forces.  In the present work they are 

taken as the store free-stream dynamic pressure and the store maximum 

cross-sectional area 

%,    = | PooV» ' (69) 
s        s 

SR = * amax (70> 

The density  p^  is assumed constant at the value for the aircraft flight 

altitude at time  t = 0  and the store free-stream velocity is given by 

equation (41) . 

The three moments about the store moment center are 

Mx ■ <J~ vR
ci+ ra(92y - v> s * 

My = «J. VRC
» 

+ m(V - V> s 

Mz " ^V^n + m'V " gx7) 

The first term on the right-hand side of each of the above expressions is 

the aerodynamic moment.  The moment coefficients,  C.. C . and C , are ■* '   £'     m7      n' 
calculated by the methods of section 5.  The reference length, I   , is 

R 
taken as the maximum store diameter 

*R = 2amax (72) 

The second terms are moments produced by the gravitational force when 

the location of the store center of mass does not coincide with the 

center of moments. 

In order to integrate the equations of motion given by equations 

(11-16) through (11-18) and (11-41) through (11-43) and the equations 

determining the angular orientation, equation (II-l), initial conditions 

of the variables must be specified.  These are the position of the 

store center of moments (£, r], £) , the translational velocity of this 

point (?,, T|, C) » the  angular velocities about the three store axes 
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p, q, r) , and the initial orientation angles (¥, 8, <t>) .  With these 

specified the equations can be integrated with the aerodynamic forces and 

moments being recalculated at each point in the trajectory. 

6.2  Description of Computer Program 

The computer program which has been written to calculate the trajectory 

of a store ejected from an aircraft consists of two programs, an axi- 

symmetric source distribution program and a trajectory program.  The calcu- 

lation of the source distributions to represent the various axisymmetric 

bodies has been kept separate for two reasons.  First, a number of runs 

may have to be made with the program to obtain a source distribution which 

adequately reproduces the shape of the body.  The second reason is that 

once the source distribution is obtained for a specific Mach number it 

need not be recalculated since for a given body shape the distribution is 

only a function of Mach number. 

For a given aircraft-stores combination and Mach number source 

distributions must be obtained for the fuselage, each different store 

shape, and the ejection rack if one is present.  The various shapes are 

specified by a series of segmented polynomials and the program calculates 

and prints the source locations and strengths.  The locations are deter- 

mined by the program from two input parameters, the location of the source 

nearest the nose and the distance between sources which is specified as 

a fraction of the local body radius. 

The trajectory program consists of three main sections.  The first 

section reads in the input data and calculates quantities from these data, 

the second section solves for the vorticity distribution which represents 

the wing-pylon loading, and the third section calculates the trajectory. 

The input data section of the program reads in the following infor- 

mation: 

(1) Aircraft flight conditions 

(2) Indices specifying what aircraft components are present 

(3) Fuselage data 

(4) Wing data 

(5) Pylon data 

(6) Rack data 

(7) Store data 
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The aircraft flight conditions are the angle of attack, flight path 

angle, Mach number, free-stream air density, and flight velocity. 

Item (2) consists of four indices.  The first three specify whether 

or not the fuselage, pylon, and rack are present and the fourth specifies 

the number of stores.  The program in its present form will handle a 

maximum of ten stores. 

The fuselage input data consist of the length, maximum radius, and 

source distribution. 

The wing input data locate the wing relative to the fuselage, inclu- 

ding its incidence, and supply information required to lay out the vorticity 

and thickness distributions.  The data also include the twist and camber 

distribution and the slope distribution of the thickness envelope. 

The pylon input data locate the pylon, from which the store is to 

be ejected, laterally relative to the fuselage longitudinal axis and 

longitudinally relative to the leading edge of the local wing chord. 

As for the wing, data required to lay out the vorticity and thickness 

distributions are input together with the slope distribution of the 

thickness envelope.  The pylon is assumed to have zero twist and camber. 

The rack is assumed to be immediately below the pylon.  The input 

data for the rack locate its nose relative to the local wing chord and 

specify its incidence relative to the wing root chord.  In addition the 

rack length and maximum radius are input. 

For each store present on the aircraft, data are input which assign 

it a store number and specify a shape number, the length, and the maximum 

radius.  Each store is located by specifying its lateral position relative 

to the wing root chord and the longitudinal and vertical position of the 

store nose relative to the wing chord immediately above the store.  The 

incidence of the store relative to the wing root chord is also specified. 

A source distribution is input for each different store shape. 

The second main part of the program calculates the wing-pylon vor- 

ticity distribution.  This is done using equations (6) and (7) of 

section 4.2.2.  The coefficient matrix is first calculated and then the 

right-hand side is determined.  The strengths of the vortices are then 

calculated by solving the set of simultaneous equations. 
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The third and last main part of the trajectory program is the 

trajectory calculation.  This section of the program consists of the 

following steps: 

(1) Input additional information to describe ejected store. 

(2) Input empennage data if store has one. 

(3) Initialize for trajectory calculation. 

(4) Calculate aerodynamic forces and moments. 

(5) Calculate accelerations and rates of change of orientation 

angles. 

(6) Integrate equation of motion. 

The additional data describing the store to be ejected include indices 

specifying which store is to be ejected, the number of segments the body 

is to be broken into for the force calculation, the separation location, 

and whether the store has an empennage.  Also, the store mass and inertia 

characteristics are read in along with the location Of the point about 

which the aerodynamic moments are to be calculated.  This is the point 

about which the moments and products of inertia were taken.  The location 

of the store center of mass relative to this point is also specified as 

are the store axial force coefficient and the value of the crossflow 

drag coefficient to be used in the viscous crossflow force and moment 

calculation. 

Three other indices are input which pertain to options included in 

the computer program.  Provision has been made to include or exclude the 

damping terms in the velocity field calculation.  Also, for stores with 

empennages, rolling moment may or may not be included in the accleration 

determination.  The third option pertains to the calculation of free- 

flight trajectories as opposed to captive-store trajectories as  obtained 

in the wind tunnel.  In wind-tunnel captive-store testing it is customary 

to change the store pitch and yaw angles to account for translational 

motion only while measuring the aerodynamic forces and moments.  This 

changes its position in the nonuniform flow field.  Provision has been 

made in the computer program to simulate this. 

For a store with an empennage, additional quantities must be 

specified.  These data are an index indicating whether the empennage is 

planar or cruciform, the tail-fin semispan, the average body radius in 

the tail-fin region, the initial roll orientation of the fins, and the 
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lift-curve slope of the fins alone.  In addition the axial position at 

which the forces are assumed to act must be specified. 

In the trajectory initialization certain store ejection conditions 

are specified.  These are an initial velocity in the vertical plane 

perpendicular to the store longitudinal axis and an initial pitching 

velocity.  The store lateral velocity and yawing and rolling velocities 

are initially zero. 

The integration of the equations of motion is done by a standard 

numerical integration technique with the aerodynamic forces and moments 

calculated at each point required by the integration scheme.  The calcu- 

lation of the nonuniform velocity field and the resulting forces and 

moments was described in section 5. 

7.  COMPARISONS WITH EXPERIMENTAL DATA 

This section of the report will present comparisons with experi- 

mental data in order to assess the accuracy of the theoretical methods 

used to predict the nonuniform flow field, store body loading distribution 

and forces and moments, empennage forces, and store trajectories.  In 

addition MER interference effects are examined as is the effect of store 

boattail on the loadings and forces.  Many more comparisons have been 

made with experimental data than are presented here.  The degree of 

agreement to be shown, however, is typical of that obtained for other 

conditions. 

All of the data comparison to be shown use wind-tunnel data from 

references 2 and 3.  The wind-tunnel model used in these investigations 

is an idealized fighter-bomber aircraft.  The wing-fuselage combination 

is shown in figure 11 and the pylon, MER rack, and stores used in con- 

junction with the wing-fuselage are shown in figure 12.  The TER rack 

used was shown in figure 7.  The large store with cylinderical afterbody 

shown in figure 12(c) was tested singly with and without empennage and 

in the TER configuration without empennage.  The large store with boattail 

afterbody shown in figure 12(d) was also tested singly with empennage 

to evaluate boattail effects.  Pressure instrumented versions of both 

large stores without empennages were used for obtaining loading distri- 

butions.  The forces and moments for the boattailed store without empennage 

were obtained by integrating the loading distributions.  In figure 12(e) 
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is shown the small boattail store which was tested in the MER configuration 

under the fuselage with and without the empennage.  A table of ordinates 

for the body of this store is given in Table I of reference 1. 

In the discussion which follows, the various aircraft components 

are designated as 

W wing 

B fuselage 

P pylon 

S large store with cylindrical afterbody tested 
c without other stores 

S, large store with boattail afterbody 

S1,S2,S3 large store with cylindrical afterbody when 
tested in TER configuration.  The cyclic order 
is shown below viewed from the rear 

0A© 0 
si>S2,S3,S4,S5,S6     small boattail stores tested in MER configu- 

ration.  SjjSg, and S3  are the front three 
with the same cyclic order as the TER con- 
figuration and  S4,S5,S6  are the rear three 
in the corresponding cyclic order 

T TER rack 

M MER rack 

Whether the empennages are present is taken from the context.  In 

addition, the parent aircraft and the store are at the same angle of 

attack in all cases to be shown. 

7.1 Flow Field and Loading Predictions for Single Stores 

The comparisons to be presented in this section are all for the 

configuration shown in figure 13.  The large store with cylindrical 

afterbody, but without the cruciform fins shown in figure 12(c), is 

mounted at the one-third semispan location y/s = -0.333.  The pylon is 

not shown in figure 13 but the store is shown in the position it would 

be in if it were attached to the pylon. 
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7.1.1 Effect of pylon on flow field and attached store load distribution 

The upwash angle W /V   and the sidewash angle  V /V   are shown 
S   o°Q S   °°c 

in figure 14 for 6° angle of attack and Mach number 0.25 at the position 

the centerline of the attached store would occupy if it were present at 

the one-third semispan position of the left wing panel.  Data with and 

without the pylon present are compared with theory.  The sidewash is 

outboard everywhere and there is a small measured effect of the pylon 

on the sidewash which is less than the predicted effect.  There is a large 

upwash along the store centerline, and its modification due to the pylon 

is well predicted by the theory. 

The normal-force distributions along the store due to the upwash 

fields just described are shown in figure 15(a).  It is seen that the 

load distribution with the pylon present is very irregular, and it is 

predicted quite well.  A number of stations along the store axis are 

necessary to describe such a load distribution if it is to be integrated 

to obtain the force and moment.  A minimum number of about 20 stations 

is required.  It is noted from the previous figure that the upwash is 

positive everywhere and has an average value corresponding to about 3.5 . 

Behind the shoulder of the store all the loading is due to flow curvature 

(rate of change of upwash with axial distance) since the store after- 

body is cylindrical.  It is seen that the net lift is nearly zero, and 

the influence of flow curvature is very important in determining the 

force and moment on the store in the present attached position.  The 

effect of the pylon is pronounced. 

The data shown in figure 15(b) exhibit a small influence of the 

pylon on the side-force distribution for the same conditions shown in 

figures 14 and 15(a).  The small magnitude of the pylon effect is some- 

what under predicted. 

7.1.2 Effect of store position and angle of attack on store forces 

As the store drops below its attached position for the configuration 

of figure 13, the influence of the pylon on the loading distributions 

diminishes rapidly but the gross forces do not change greatly.  Consider 

figure 16 which shows the variation of store normal force and side force 

with vertical location at a fixed angle of attack of 6 .  The distance 

Az  is zero for the attached position.  There is not much change in normal 

force or side force acting on the store for several diameters beneath the 

pylon, and the theory predicts this trend well. 
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In figure 17, the variations with angle of attack of the store 

normal-force coefficient and side-force coefficient are shown.  The store 

is one diameter below the attached position Az/d = 1.0.  The variations 

with angle of attack are suprisingly small and are predicted well by the 

theory. 

7.2  Flow-Field and Loading Predictions for TER Configurations 

In this section, the comparisons to be presented are for the TER 

configuration shown in figure 18.  The large stores with cylindrical 

afterbody and no fins are used in the TER grouping.  As shown in figure 18, 

the stores are in the carriage position when the pylon of figure 12(a) 

and the TER of figure 7 are present.  They are not shown in figure 18 

for clarity.  As in the single store case, the stores are at the one- 

third semispan location.  For all comparisons to be shown the Mach number 

is 0.25. 

7.2.1  Flow-field predictions 

The flow field has been measured for a number of positions beneath 

a TER configuration with the bottom store missing.  The TER rack is longer 

than the pylon and has been approximated by an equivalent body or revo- 

lution in the prediction method.  The values of  V /V  and W /W   are 
* S   oo        s   oo 

shown in figure 19 along the position the axis of store  Sx  would 

occupy for the attached store location, Az/d ■ 0, and for one diameter 
below the attached location Az/d = 1.0.  In the figure title, WBPTS2S3 

indicates the parent aircraft configuration generating the flow field. 

There is considerable difference in the upwash between these vertical 

locations which is well predicted by the theory.  In the theory the 

effect of the shoulder stores  S2 and S3  has been predicted using three- 

dimensional source terms.  Higher harmonics such as dipoles fall off 

more rapidly with distance from the store than source terms which dominate 

the flow far away.  It is clear that neglecting these high harmonics 

yields fairly accurate results for both  V /V   and W /V    in the 
s s present instance. 

The variations with angle of attack of the sidewash and upwash 

angles are shown in figure 20 for a position of the store one diameter 

beneath its attached position.  Both the sidewash and upwash angles are 

predicted well for a  = 0  and a = 6 .  The calculative method thus 

predicts well the effects of vertical location and angle of attack of the 

aircraft on the flow field acting on the store. 
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7.2.2  Loading predictions 

The normal-force distribution on store Sx     of the TER configuration 

for the attached store and for a location one diameter below its attached 

position are shown in figure 21(a).  The loading on the attached store 

is somewhat underpredicted in the region of the pylon.  However, at one 

diameter beneath the pylon the prediction is very good.  Similar results 

for the side-force distribution are shown in figure 21(b) with the same 

general results for comparison between theory and experiment.  The loading 

theory utilizes predicted flow field quantities and does not include the 

special rack effect discussed subsequently. 

The effect of angle of attack on the normal-force distribution of 

St  of the TER configuration is shown in figure 22(a) for a distance of 

the store one diameter beneath its attached position.  Experiment and 

theory are in good agreement for the angles of attack of 0  and 6 

shown in the figure.  Analogous results are shown in figure 22(b) for 

the side-force distribution with good comparison between experiment and 

theory. 

The effect of the rack on the loading distribution on store Sx  in 

the attached position is shown in figure 23.  The rack, shown in figure 7, 

can be modeled approximately by a body of revolution with a pylon beneath 

it.  The theory shown in figure 23 for the rack effect is based solely 

on the source distribution corresponding to its equivalent body of revo- 

lution.  As such it causes the change in theoretical load distribution 

given in figures 23(a), but it has no effect on the side-force distribution 

shown in figure 23(b).  Actually, the effect of the rack on the normal- 

force distribution exhibited by figure 23(a) is qualitatively similar to 

the effect of the pylon on the normal-force distribution on a single 

store as shown in figure 15(a).  Accordingly, the discrepancy between 

theory and experiment shown in figure 23(a) can probably be ascribed to 

neglect of the rack pylon in the model.  This effect is of importance 

only for attached loads, and is negligible for the store one diameter 

below its attached position.  It can be included in the present computer 

program, but has not been at this time.  The rack pylon can also have 

an effect on side-force distribution as shown in figure 23(b).  The 

theoretical curves for the two cases are identical since the source distri- 

bution representing the rack produces no side load. 
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The loading distributions on store S2     of the TER configuration 

after  Sx  has been released are shown in figure 24 for the attached 

position and one diameter beneath the attached position.  For the attached 

position there are effects on normal force and side force, which are probably 

associated with the secondary pylon, not accounted for by the theory. 

At a distance of one diameter beneath its attached position, the experi- 

ment and theory are in good agreement for both normal force and side 

force. 

For a position of  S2  one diameter below its attached position the 

loading distributions are shown for a = 0  and a = 6   in figure 25. 

The normal force distribution is predicted quite well for both angles of 

attack in figure 25(a) and the side-force distribution predictions shown 

in figure 24(b) exhibit similar agreement. 

7.3  MER Interference Effects 

The interference effects previously described for a TER configuration 

also exist in a MER configuration, but in addition there is interference 

between the front three stores and the rear three stores.  A MER configu- 

ration has been tested under the fuselage as shown in figure 26.  The 

stores used on the MER rack of figure 12(b) are those shown in figure 12(e). 

Tests have been conducted for stores with and without cruciform empennages. 

For all comparisons to be shown the Mach number is 0.4C. 

In figure 27, the squares indicate the influence of the front three 

stores, SlfS2, and S3, on the normal force and pitching moment of store 

S4, the bottom rear store.  The circles indicate the influence of the 

rear two shoulder stores, S5 and S6, on the normal force and pitching 

moment of store S1.  The inclusion of store  S4  in the latter group 

was not feasible because  Sx  was sting mounted. 

The normal-force coefficient increments shown in figure 27(a) are 

small in accordance with predictions of theory.  The theory is based on 

determining the interference flow field of the stores by three-dimensional 

source distributions.  The pitching-moment coefficient increments for 

Sx and S4  have opposite signs.  This effect is explained by the theory. 

Stores Slt   S2 , and S3  produce a downwash over the length of  S4  which 

decreases with distance behind the nose of  S4.  Accordingly, a down load 

is induced on the nose of  S4  which produces a negative moment.  Stores 

S5 and S6  produce a downwash on store S1     which is greatest at the rear 
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and least at the nose.  Accordingly, the down load at the rear dominates, 

and a positive pitching moment results.  If all of the stores were sym- 

metrical about their mid-points, the theoretical normal-force increments 

on  Sx and S4  would be equal, and the moment coefficient increments would 

be equal in magnitude and opposite in sign (considering S4  to be inclu- 

ded in the rear grouping). 

These data also show that no serious interference effect associated 

with body doublets or trailing vortices occurs up to angles of attack of 

10°.  A change with angle of attack of the increments would be associated 

with changes in store doublet strengths and changes in trailing-vortex 

characteristics.  Since the effects of doublets fall off more rapidly 

with distance than those of sources, the source effects will dominate 

the interference.  More precise results can be obtained by including the 

doublet and trailing-vortex effects. 

Experimental results analogous to those of figure 27 are shown in 

figure 28 for the stores with cruciform empennages.  It is of importance 

to discuss the interference effects of S1     separately from those of S4 

since the empennage trailing-vortex systems of S1, S2, and S3  come close 

to S4  while those of S5 and S6  have negligible influence on Slm     The 

difference in the force and moment acting on  SL (with empennage) with 

and without  Ss and S6  present is due to loadings induced separately on 

its body and its empennage.  If the downwash induced along  Sx by S5  and 

Se  is not influenced significantly by their empennages, then the  Sx 

body loading contributions due to  S5 and S6  will be the same with or 

without empennages on all stores.  The rest of the contribution will be 

due solely to the addition of the  Sx  empennage into the induced down- 

wash field.  Accordingly, if the contribution in figure 27 for  Sx  is 

subtracted from the corresponding body contribution in figure 28, the 

result should be the empennage contribution of  Sx  due to the addition 

of S5  and  S6.  When increments ACXT and AC   are calculated in this N      m 
fashion, it is found that the incremental center of pressure given by 

AC /AC   lie on the empennage of Slt   thus supporting the above explana- 

tion of the interference effects of S5 and S6  on Sx. 

In the assessment of the effects of S-L , S2, and S3 on S4, it is 

noted that the wakes of Slt S2, and S3 all pass downstream along the 

entire length of  S4  so that the downwash distribution along  S4  is 
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definitely influenced by the empennages of Slt   S2, and S3.  Accordingly, 

the center of pressure of the interference effects determined in the 

preceding manner will not necessarily lie on the empennage.  In fact, it 

is found to lie approximately 1.5 diameters behind the center of moments 

of  54, the store mid-point. 

7.4  Empennage Contributions to Forces and Moments 

Comparison between experiment and theory for forces and moments due 

to the presence of the empennage are now considered.  It is clear that 

the method of determining flow fields acting on the store is equally 

applicable to the store empennage forces in a nonuniform flow field. 

A method of determining empennage contributions to C , C , C , C , and 

C. based on reversed flow theorems has been described in section 5.3. 

This method has been used with experimental flow-field data to estimate 

the above quantities for comparison with measurements. 

In figure 29, the forces and moments for store  S  mounted at or 

near the attached position, shown in figure 13, are shown as a function of 

roll angle and compared with theory for angles of attack of 8  and 16 . 

A roll angle of 0  places the fins vertical and horizontal.  The incre- 

mental coefficients are the difference between the coefficients with the 

empennage on and with the empennage off. 

The variations of normal-force and side-force coefficient incre- 

ments with roll angle are shown in figure 29(a).  The theory is in fair 

agreement with the data at both angles of attack.  A measure of the 

accuracy of the theory can be made by comparing the data at  0=0 

and 0 = 90 .  In the side-force coefficient increments, the difference 

between theory and experiment generally does not exceed the difference 

between the 0=0  and 0 = 90  experimental values of these increments. 

Any difference can be due to measurement inaccuracy or to slight fin 

misalignment.  We can conclude that the agreement is within the accuracy 

of the data. 

With regard to the comparisons for pitching moment shown in 

figure 29(b) the data agrees with the theory quite well when accounts are 

taken of the suppressed origin of the vertical scale and the difference 

in the data at  0=0  and 0 = 90°.  With regard to yawing moment, the 

difference between theory and experiment at a = 8   cannot be entirely 

accounted for by data inaccuracy.  At a * 16°  the agreement between 

experiment and theory is within the accuracy of the data. 
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Comparison between theory and experiment are shown for rolling- 

moment coefficient in figure 29(c).  In this case, all the rolling moment 

is due to the empennage.  For  a = 8   the comparison between experiment 

and theory is fairly good.  The difference, which at some points amounts 

to an increment in rolling-moment coefficient of 0.02, corresponds to 

about 0.35 degrees of roll control for a single opposing pair of panels. 

The agreement at  a = 16   is not as good with the discrepancies being 

about twice those for the  a = 8°  case.  The nature of rolling moment 

for a cruciform empennage is of interest in assessing the comparisons 

between experiment and theory.  In general, the rolling moment due to 

one opposing pair of panels is large and opposes that due to the other 

pair of opposing panels with a small net rolling moment.  Since the net 

rolling-moment coefficients shown in figure 29(c) are small, the degree 

of agreement between experiment and theory is considered fair. 

7.5  Effect of Store Boattail on Loadings and Forces 

In the comparisons shown so far for the single store, the store 

afterbody has been cylindrical and this store is designated  S .  In 

order to study the effects of boattail on the store loadings and forces, 

a special pressure distribution store with boattail, S, , as described in 

figure 12(d), but without empennage was constructed and fitted with 

sufficient pressure orifices to obtain accurate loading distributions. 

The nose of this store is identical to the nose of  S .  Before studying 

the effects of boattailing in a nonuniform flow, it is worthwhile studying 

the effects in uniform flow. 

7.5.1  Effect of store boattail on store loading in uniform flow 

In figure 30 the normal-force loading distributions for uniform flow 

for stores  S, and S   are compared for several angles of attack to show 

the experimental effect of the store boattail on the loading.  Figure 

30(a) through 30(d) both show identical experimental loadings on the 

identical noses, a fact indicating little or no upstream influence of 

the separated flow regions downstream of the nose.  However, the boat- 

tailed afterbody carries more negative load than the cylindrical after- 

body as might be expected. 

Several theories are shown on the figure for comparison with the 

data.  Slender-body theory, section 5.2.2, does a fair job of calculating 

the load distribution at  a = 4°. In order to obtain a more precise 
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theoretical prediction for attached flow for assessing separation effects, 

a fully three-dimensional source and doublet calculation, D. S., was 

made by the method of Appendix III.  The question of the Kutta condition 

for a body of revolution was ignored, and the blunt base of the body was 

continued smoothly to a point.  It is presumed that this solution will 

give an accurate estimate of the load distribution for the body except 

possibly close to the base.  The boundary conditions of thickness and 

angle of attack were satisfied at the body surface, and the full Bernoulli 

equation was used in determining the loadings. 

It can be seen that the data are in excellent agreement with the 

doublet theory up to the body separation region.  Assuming that the 

separation region for the present purposes can be taken as that region 

where the experimental loading departs from the theoretical one, one 

finds a smooth forward movement of the separation region with increase 

in angle of attack as shown in figure 31(a).  In this figure the separa- 

tion regions are shown as estimated from figure 30.  A mean line has been 

faired through the regions.  The mean value of x   from this curve has 

been used in determining the curve in figure 31(b), which shows the 

distance of the separation point behind the shoulder of the store in 

multiples of the maximum diameter.  Separation lies within about 1 to 2 

maximum diameters behind the store shoulder for the boattail body for 

most of the useful angle-of-attack range 

The source-doublet theory is also given in figure 30 for the store 

with the cylindrical afterbody.  The separation parameters have been 

determined from these data and are shown on figure 31 for comparison with 

those for the boattail store.  It is noted that boattail moves the 

separation region forward as would be expected. 

With regard to the additional loading behind the separation point 

due to cross-flow drag, analysis of the data does not correspond to a 

uniform cross-flow drag coefficient.  It has been found that an estimate 

of body loading can be made by assuming the loading to be uniform 

downstream of separation, at its separation value.  A slight effect of 

the base is evident very close to the base. 
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7.5.2  Effect of boattail on store loading in presence of wing-body 
combination 

Normal-force and side-force loadings were measured on the store in 

the carriage position in the presence of the wing-body combination, see 

figure 13, without the pylon present.  The normal-force loading distri- 

butions with and without boattail are shown in figure 32 for a = 4 

and a = 16 .  The theory shown for a - 4   is the slender-body theory 

which predicts quite well the loading distribution with and without 

boattail.  The theory is based on theoretical flow angles at a = 4 

so that the agreement between experiment and theory includes the errors 

in the flow-field prediction method and the loading calculation method. 

At  a = 16   the data as shown in figure 32(b) exhibit a small 

effect of boattail.  On the nose the results for both stores would be 

identical except for possible upstream influence of the afterbody or 

possible experimental error.  The experiments were made many months apart. 

It is noted that slender-body theory over-predicts the magnitude of the 

loading distribution at this large angle of attack. 

The differences between the data and slender-body theory are due 

in part to an overprediction of the angle-of-attack distribution along the 

store and in part to an overprediction in the loading distribution calcu- 

lation.  To eliminate both these sources of error in the theory a source- 

doublet calculation, Appendix III, was made similar to that for uniform 

flow previously described in connection with figure 30 using the experi- 

mental downwash distribution as input.  The improved theory indicates 

generally improved agreement with experiment especially when the buoyancy 

correction is included in the theory.  This was made using the method of 

section 5.2.1.  These comparisons are of interest because they tend to 

show that separation seen for uniform flow is of reduced extent for the 

store at the same angle of attack under the wing-body combination.  This 

result can be explained by the fact that the wing-body combination turns 

the flow more parallel to the store and reduces the average angle of 

attack in the attached position.  For instance, with a = 16°, the local 

angle of attack at the nose is about 13  while that on the rear half of 

the store is about 6 .  Whether there is any separation over the rear part 

of the store cannot be determined with certainty because the accuracy of 

the improved theory, Appendix III, for attached flow cannot be guaranteed 

in the region of the body base because of the unknown wake effects and the 

lack of a Kutta condition applicable to bodies of revolution. 
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Once the store leaves the attached position, it is not clear that 

the angle-of-attack distribution along the store will be small.  Large 

angles of attack may occur once the straightening effect of the wing is 

reduced, and extensive separation similar to that in uniform flow may 

occur.  In this case, a method of calculating the loading distribution 

similar to that suggested for uniform flow may be worthwhile.  This point 

has not been pursued in the current investigation since an accurate method 

of determining the wing flow field at high angles of attack is unavailable. 

Data are available for a boattail store at distances up to a diameter 

below the carriage position but no further. 

Results similar to those in figure 32 for normal force are shown 

in figure 33 for side force.  At a = 4  the effects of boattail on 

side-force loading distribution are small and are well predicted by 

slender-body theory.  At a = 16  slender-body theory overpredicts the 

magnitudes of the loading distribution.  The use of the more precise doublet- 

source method yields better agreement with experiment although the correction 

for buoyancy tends not to improve the agreement.  The sidewash angle 

varies from 9.2  at the nose to 4.3  at the base in a nearly linear 

fashion.  This decreasing local sidewash angle in the streamwise direction 

probably tends to inhibit separation although the extent of separation, 

if any, cannot be determined precisely from the results of the figure. 

7.5.3  Effect of boattail on empennage forces and moments 

All forces and moments except drag have been measured on  S  and S, 

with and without empennages.  The changes in C , C , C , C  and C.  due 

to adding the empennage are shown in figure 34 as a function of roll 

orientation.  In these tests the pylon was present, and the store is 

slightly below the pylon, Az/d = 0.1333.  The experimental differences 

due to boattail can be seen by comparing solid and open symbols.  The 

theory is based on measured flow quantities in the region to be occupied 

by the empennage together with reverse flow theorems. 

For normal force and side force, the effect of boattail is to 

increase the magnitude of the coefficients by an amount in good accordance 

with theory.  The discrepancy between experiment and theory is within 

the accuracy of the experimental data judged by comparing values for 

0=0  and 0 = 90 , which should be equal.  The increase in the magnitude 

of the normal force due to boattail is about 12 percent and about 30 per- 

cent for side force. 
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The results for pitching moment and yawing moment shown in figures 

34(c) and 34(d) are in good accord with theory when account is taken of 

the suppressed origin and the inaccuracy of the data exhibited by compari- 

son of the values at  0=0° and 0 = 90 . 

The results for rolling moment shown in figure 34(e) exhibit the 

same behavior as those in figure 29(c). 

7.6  Trajectory Studies 

The methods of flow-field predictions and store force and moment 

determinations presented in sections 4 and 5 have been combined into one 

program with the six-degree-of-freedom equations of motion of section 6 

to yield a trajectory prediction method.  A number of sample trajectories 

have been run to provide predictions for comparison with captive-store 

trajectories. 

In order to represent full-scale conditions, the wind-tunnel models 

shown in figures 7, 11, and 12 have been scaled up by a factor of twenty. 

The following input quantities have been used for all trajectories to be 

shown: 

Store Mass = 15.53 slugs 

I   =8 slug-ft2 
XX 3 

I   =1  =80 slug-ft2 yy    zz 

xy    yz    xz " 

x = y = z = 0 

Altitude = 5000 ft 

5 .   =10 ft/sec (initial vertical 
velocity of ejected store) 

C    ■ 0.625 ft (initially, ejected 
store is one radius below 
attached position) 

Initial store and aircraft angles of attack are equal. 
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7.6.1 Statically unstable single store dropped beneath wing 

A comparison between the calculated trajectory and the captive- 

store trajectory for no damping is shown in figure 35 for the cylindrical 

afterbody store (fig. 12(c)) with no empennage.  It is released at time 

t = 0  one store radius beneath its attached position on the pylon at the 

one-third semispan position, figure 13, with a = 4  for both the air- 

craft and the store.  In figure 35 the three left-hand curves show the 

position of the store center of gravity relative to its carriage position. 

The quantities A£, Ar), and AC  are respectively positive forward, 

positive to the right (toward the fuselage), and positive down.  The left- 

hand curves show a slight rearward movement of the store, no lateral 

movement, and a vertical movement equivalent to free fall.  The two right- 

hand curves show a substantial yaw AT of the store nose outboard 

and a large pitch up AÖ of the store which is somewhat overpredicted 

by the computer program. 

The fact that the pitch up is overpredicted can be readily explained. 

The nose-up motion of the store places it at an angle of attack of about 

12° at  t = 0.4  seconds.  At this time the store is well below the wing 

so that the flow is nearly uniform.  At this condition the captive store 

balance yields a pitching-moment coefficient of 0.9, the store alone in a 

uniform field yields 1.05, and the computer program yields 1.3.  It 

appears that the captive-store measurements are too low and the computer 

program result is too high.  Figure 30(c) shows the store loading at 

a = 12° in uniform flow.  It is seen that slender-body theory overpredicts 

the loading on the store nose at this angle of attack and that the contri- 

bution of the afterbody to the pitching moment is small.  Increased accuracy 

of prediction would then be obtained using the improved source-doublet 

method described in connection with figure 30. 

The effect of damping for this statically unstable case is of 

little interest and was not studied.  The calculated trajectory shown 

required approximately 5 to 6 minutes on a Univac 1108 computer. 

7.6.2 Statically stable single store dropped beneath wing 

A comparison similar to that of figure 35 is shown in figure 36 for 

the same store and initial conditions except that a cruciform empennage 

has been added to produce static stability.  Results are shown for angles 

of attack of a = 0  and a = 4 .  The store center of gravity coordinates 
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Ar|, AC) show the same general behavior as the previous case. The 

pitching and yawing motions from the computer program and the captive- 

store trajectory are in good agreement for both angles of attack. The 

pitching motion is nose down in this instance compared to a pitch-up in 

the previous case. It is noted that a few degrees of roll occur. The 

roll excursions are so small that they have no effect on the calculated 

trajectories. 

In order to assess the importance of damping on the motion, the 

trajectory was also calculated including damping in all three angular 

motions.  The damping effect is negligible except in the pitching 

oscillation which was reduced in maximum amplitude by about one degree 

as the result of pitch damping. 

7.6.3  Statically unstable store dropped from TER group beneath 
wing 

Stores  S   without empennages were mounted in a TER group under 

the wing, figure 18, and the trajectory of the bottom store was calcu- 

lated using the computer program and measured by the captive-store 

technique.  The comparison between the two sets of results is shown in 

figure 37.  As in the preceding case, the center-of-gravity location 

shows the same behavior with the same good agreement between theory and 

measurement.  The store exhibits divergence in both pitch and yaw.  The 

overprediction of the pitch up in this case is similar to that shown in 

figure 35 for the same reasons. 

8.  CONCLUDING REMARKS 

This report presents the results of an investigation which has been 

conducted with the objectives of extending and improving the store 

separation prediction method of reference 1.  In this earlier work the 

trajectory was limited to three degrees of freedom, the pylon and ejector 

rack were not modeled, wing dihedral was not included, a two-dimensional 

wing thickness model was utilized, and a simple method was used to calcu- 

late the empennage normal force which could not be used to determine 

rolling moment.  All of these shortcomings have been eliminated in the 

present work. 

The fuselage and store volumes are represented by distributions of 

three-dimensional point sources along the body longitudinal axes.  The 
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same method is used to model the body of the ejector rack.  The short 

pylons on the rack have not been included in the present method. 

The wing model used in the work of reference 1 has been replaced by 

a wing-pylon model which includes complete mutual interference between 

the wing and pylon.  The wing-pylon thickness distribution is represented 

by three-dimensional source strips and superimposed upon this is a 

vortex lattice which represents the loading distribution.  The boundary 

condition imposed in determining the vortex strengths includes wing 

angle of attack and twist and camber, mutual interference between wing 

and pylon, and interference due to the fuselage, rack, and stores.  The 

wing model allows for breaks in sweep and dihedral.  The pylon can be 

swept but breaks in sweep are not allowed. 

Calculations utilizing the flow models just described have been 

compared with experimental flow-field data obtained under various parent 

aircraft configurations.  The agreement is quite good except for the case 

of a store in the carriage position on a TER rack where the short pylon 

which is part of the rack produces an effect not accounted for by the 

theory.  This effect disappears rapidly as the store moves off of the 

rack.  This pylon can be accounted for within the framework of the present 

theory but has not at this time. 

Methods are presented for calculating all of the aerodynamic forces 

and moments except axial force.  The methods for calculating the body 

forces and moments are the same as those used in reference 1 except that 

a simpler method based on slender-body theory is used for the buoyancy forces 

and moments.  Angle of attack effects are accounted for by a combination 

of slender-body theory and viscous crossflow theory.  The empennage forces 

and moments, including rolling moment, are calculated using reverse flow 

theorem.  Good agreement between calculated and experimental forces and 

moments is obtained except at high angles of attack where slender body 

theory overpredicts the lift on the store nose.  It is shown that by 

using a more precise method for calculating the forces the agreement is 

significantly improved.  For a group of six stores mounted on a MER rack 

the theory predicts the interference of one cluster of three on the other 

cluster quite well. 

Theory and experiment have been used to determine the effect of 

store boattail on the location of flow separation from the body. 
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The results indicate that the effect of boattail is to cause a forward 

movement of the separation location for the store in uniform flow.  With 

a parent aircraft the effect is not as pronounced since the wing tends to 

align the flow with the body axis thus reducing the average angle of 

attack over the rear half of the store. 

The flow field and force and moment prediction methods have been 

included with the six-degree-of-freedom equations of motion in a computer 

program which calculates the trajectory of a store dropped from an air- 

craft flying at constant velocity in rectilinear flight.  The stores can 

be mounted singly on a pylon or in groups on a rack.  The equations of 

motion allow for mass and inertia assymmetries of the ejected store. 

Comparisons have been made between predicted trajectories and captive- 

store trajectories obtained in the wind tunnel.  Very good agreement is 

obtained for stable stores.  For unstable stores very good agreement is 

shown except for the store pitch angle.  The theory overpredicts the 

pitch excursion from its initial value due to slender-body theory over- 

predicting the load on the store nose. 
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Figure 1.- Coordinate system for an 
axisymmetric body. 
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Figure 2.- Coordinate systems for wing-pylon 
and horseshoe vortices. 
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Figure 3.- Vortex-lattice model of a wing-pylon. 
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Figure 4 - Flow tangency boundary conditions 
for the wing and pylon. 
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THICKNESS 
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TANGENT TO THICKNESS 
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Figure 5.- Coordinate system for wing thickness source strips. 
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Figure 6.- Coordinate system for pylon thickness source strips, 
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All dimensions 
in inches 

When attached to pylon, rack 
centerline is aligned with 
pylon centerline 

Section A-A 

Figure 7.- Details of TER rack. 
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Figure 8.- Coordinate lystems fixed in ejected store and used 
in force and moment calculation. 
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Figure 9.- Coordinate systems used in trajectory calculation, 



Figure 10.- Coordinate systems used in empennage force 
and moment calculation. 
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Quarter chord 

All dimensions 
in inches 

Figure 11.- Wing-fuselage combination. 
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3 
2.00 

I 

Upper surface 
contoured to 
fit wing or 
fuselage 

All dimensions 
in inches 

For wing pylons, pylon centerline located at 
40% wing chord. 

For fuselage pylon, pylon centerline located 
19.43 inches aft of fuselage nose. 

(a) Pylon used with single store and 
MER and TER racks. 

Figure 12.- Aircraft components used with 
wing-fuselage combination. 
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(b) MER rack. 

Figure 12.- Continued. 



0.750D 

0.500D 

All dimensions in inches. 

(c) Large store with cylindrical afterbody 
and rectangular cruciform fins. 

Figure 12.- Continued. 



All dimensions in inches. 

(d) Large store with boattail afterbody 
and rectangular cruciform fins. 

Figure 12.- Continued. 



Store 
Midpoint 

Store midpoint aligned with suspension centerline 
on MER rack when in carriage position. 

Unfinned force and moment model same as finned 
model except for omission of fins. 

Finned and unfinned dummy stores same as respective 
force and moment stores except for omission of 
center bore for balance mounting. 

All dimensions 
in inches 

0.250D 

0.350D 

Hh— 0.029 

(e) Small boattail MER store with 
cruciform empennage. 

Figure 12.- Concluded. 



All dimensions 
in inches 

0.7 5D 

Figure 13.- Large store with cylindrical afterbody 
under wing-fuselage configuration. 
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No pylon 
Pylon 

Figure 14.- Effect of pylon on flow field of 
wing-body combination at centerline 

location of attached store. 
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THEORY 

(a) Normal-force distribution. 

Figure 15.- Effect of pylon on load distributions 
of attached store. 
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THEORY 
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y/s 

6° 
0.25 
-O.33: 

1 

(b) Side-force distribution. 

Figure 15.- Concluded. 
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l 1           1 
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DATA              o 
THEORY    

.5        2.0 

Figure 16.- Effect of vertical location on normal-force 
and side-force coefficients of store. 
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Az/d = 1.0 
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DATA              o 
THEORY     

Figure 17.- Effect of angle of attack on normal-force 
and side-force coefficients of store. 
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Figure 18.- Large stores with cylindrical afterbody 
in a TER arrangement under the wing. 
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Figure 19.- Effect of vertical position on downwash 
and sidewash under TER configuration 

(parent aircraft - WBPTS2S3). 
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Figure 20.- Effect of angle of attack on downwash 

and sidewash under TER configuration 
(parent aircraft - WBPTS2S3). 



DATA     THEORY 
Az/d = 0 o   
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dC N 
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(a) Normal-force distribution. 

Figure 21.- Effect of vertical position on loading distributions 
on store S1     of TER configuration 

(Parent aircraft WBPTS2S3). 
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(b) Side-force distribution. 

Figure 21.- Concluded. 
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(a) Normal-force distribution. 
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Figure 22.- Effect of angle of attack on loading distributions 
on  Sa  in TER configuration (parent aircraft - WBPTS2S3). 
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(b) Side-force distribution. 

Figure 22.- Concluded. 
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(a) Normal-force distribution. 

Figure 23.- Effect of TER on loading of store Sx 
(parent aircraft - WBPT and WBP). 
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(b) Side-force distribution. 

Figure 23.- Concluded. 
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(a) Normal-force distribution. 

Figure 24.- Effect of vertical position on loading 
distribution of shoulder store  S2 

of TER configuration 
(Parent aircraft WBPTS3). 
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(b) Side-force distribution. 

Figure 24.- Concluded. 
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(a) Normal-force distribution. 

Figure 25.- Effect of angle of attack on loading distribution 
of shoulder store  S2  of TER configuration 

(parent aircraft - WBPTS3). 
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Figure   25.- Concluded. 
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Figure 26.- Small boattail stores in a MER arrangement 
under the fuselage. 
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(b) Pitching-moment coefficient. 

Figure 27.- Effects of  S5, S6  on  S2  and  Slf S2, S3 
on  S4  in MER configuration; no empennages. 
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(b) Pitching-moment coefficient 

Figure 28.- Effects of S5, S6  on Si  and Sx, S2, S3 
on  S4  in MER configuration; with empennages. 
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Figure 29.- Effect of roll angle on empennage contributions 
to store S   forces and moments 

in the attached position 
(parent aircraft WBP). 
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Figure  29.- Continued. 
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Figure 29.- Concluded. 
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Figure 30.- Effects of store boattail on 
store loading in uniform flow. 
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Figure 30.- Continued. 
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Figure  30.- Continued. 
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Figure 32.- Effects of boattail on normal-force 
distribution of store in presence 

of wing-body combination. 
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Figure 33.- Effects of boattail on side-force 
distribution of store in presence 
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Figure 35.- Comparison between calculated trajectory and captive-store 
trajectory of store  S_  released at one-third 

semispan location;  M^ - 0.4. 
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Figure 36.- Comparison between calculated trajectories and captive-store 
trajectories of store  Sc  with empennage released at 

one-third semispan location; M^ - 0.4. 
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Figure 37.- Comparison between calculated trajectory and captive-store trajectory 
of finleas store  Sx  released fro» TER group at one-third 

semispan location;  M„ - 0.4. 
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APPENDIX I 

CALCULATION OF FORCES AND MOMENTS DUE TO THE 
EMPENNAGE OF AN EXTERNAL STORE IN A NONUNIFORM AIRFLOW 

1-1.  INTRODUCTION 

The empennage of an external store in a nonuniform airstream, as 

may occur under an aircraft, will develop forces and moments which affect 

its trajectory.  While the forces on the body of the store can be deter- 

mined using slender-body theory, the empennage is generally not slender so 

that a different approach is required.  The approach here will be based on 

a combination of reverse flow theorems and slender body theory scaled for 

the effects of aspect ratio as done in wing-body interference theory 

(ref. 16).  It will be possible to calculate all forces and moments 

except drag using a unified approach.  The effects of interference between 

body and tail panels will be accounted for, and the method will be 

applicable to cases where vortices appear in the flow; for instance, 

vortices discharged from the body at a position in front of the empennage. 

Also planar, triform, and cruciform empennages are included within the 

framework of the method.  However, the influence functions for triform 

empennages will not be worked out in this appendix.  Only planar and 

cruciform empennages will be treated. 

1-2.  AXIS SYSTEM AND NOTATION 

The coordinate system to be used in the empennage calculation is 

shown in figure 10 for the crossflow plane at which the empennage forces 

are assumed to act, the quarter-chord position of the mean aerodynamic 

chord of the exposed panels.  This  xf,y,.,zf  system is fixed in the fins 

and oriented with respect to the store body coordinate system of figure 8 

through the angle  #f.  The  xf  axis lies on the  x   axis.  The angle 

0f  is specified in order that the tail fins can be other than vertical 

and horizontal at the beginning of a trajectory.  Both coordinate systems 

are fixed in the store so that they translate and rotate with the store 

during the trajectory. 

The cruciform fins are designated F±, F2, F3, and F4  as shown in 

figure 10 with  F3 and F4  missing for the planar case.  The resultant 

velocity components normal to the four fins are designated  Wx, W2, VL, 
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and V2, respectively, with positive directions as shown.  They vary 

across the span of each fin.  The procedure for calculating these normal 

velocities is as follows: 

1. Specify panel coordinates (yf or zf) where the normal velocities 

are to be obtained. 

2. Transform there points to the store body coordinate system of 

figure 8. 

3. Calculate the  V  and W  velocities by the procedure described s      s 
in section 5.1. 

4. From  V  and W   for each point determine the component normal 

to the fin. 

The velocity determined in the above manner include terms accounting 

for the store translational motion and pitch and yaw rotation.  The method 

of accounting for rolling motion will be discussed in section 1-4 of this 

appendix. 

1-3.  DETERMINATION OF NORMAL FORCE AND SIDE FORCE DUE TO EMPENNAGE 

The normal force, Zf, and side force, Yf, due to the nonuniform 

flow field at the empennage is readily determined from reverse flow 

theorems.  The calculation is identical whether the empennage is a 

planar one with panels lying on the  yf  axis, or a cruciform one with 

panels on both the  yf and zf  axes.  In determining  Zf  for the 

planar case, we assume that the velocities  Wx  and W2  depend principally 

on  yf  and that they vary slowly enough along the chordwise direction 

that they may be represented by an average value.  Wind-tunnel measure- 

ments bear out this assumption.  The values of VJX   and W2  yield symmetri- 

cal and unsymmetrical angles of attack as follows: 

wx(yf) + W2(-yf) 
as = 

00 
S 

Wi(yf) - W2(-yf) 
au ■  W  

00 
s 

(1-1) 

where  V(>   is the velocity of the store moment center which is assumed 
s 
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equal to the resultant velocity at the points in question.  The symmetri- 

cal part only produces  Zf, and the unsymmetrical part produces only 

rolling moment.  By symmetry there is no effect of panels  F3 and F4 

in the production of normal force by panels F1   and F2.  However panel- 

panel interference is significant for rolling moment.  The lack of panel- 

panel interference for Yf and Zf  makes the calculation of these 

forces identical for planar and cruciform configuration. 

Consider now a planar empennage with a circular body in direct flow 

and in reverse flow as shown. 

^^ Y^ 
Let  S_  be the body planform area and  S„ be the total planform area 

of both panels.  Let  P, and a,  be the pressure coefficient and local 

angle of attack in direct flow, and let  P  and a  be the corresponding 

quantities in reverse flow.  Then by the reverse flow theorem (ref. 16, 

p. 221) 

JJ PraddS ■  JJ PdardS (I-2) 
S
B + SH SB + SH 

Choose the following specific values of angles of attack and pressure 

coefficients 

ad = 0  on  Sß ar = 0  on  Sß 

ad = as  on  SH ar = X  °n SH 

P, = P, P = P, d    d r    l 
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Then 

JJ   PddSH=      //asPldSH f1"3' 
SH SH 

Now the normal force on the horizontal panels in the presence of the 

body considering both upper and lower surfaces is 

s,   t.e. n 
zf ,H(B)   "   2%    i/PddS   =   4q»s    /       / Qs   P*   dxf  d*f (I"4 

SH I.e. 

Let the span-load distribution in reversed flow be (ccJ  such that V 

t.e. 

I.e. 

Accordingly we have 

J        Pl dx, (cc^)  = 2 j P1   dxf 

Zf,H(B) " 2<^       J' ■.<OCl,1 d*f (I"6) S
 a 

since  a   depends only on  yf. 

We now establish the amount of normal force carried over onto the 

body by viture of the panel pressure field.  For this case let 

ad = 0  on  S ar = 1  on  Sß 

ad = as  °n  SH ar = °  °n  SH 

P, = P, P.. = P2 d    d r 

Then 

//PddSB = JJP^sdSU (I"7) 

H 
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The lift on the body due to the horizontal panels is now 

s,_       t.e. 

f,B(H)    =   2«~      ÜPddSB  "   4qcos    Jh    i V*   dXf   d*f (I~8) 

a    I.e. 

Designating the span loading for this case by (cc.)   we have 
I   2 

t.e. 

/ 
cc^ = 2 J     P2 dxf (1-9) 

I.e. 

so that 

The 

Sh 
Zf,B(H) * 2^o  /  «a^l^ dyf (I"10) s  a 

total normal force due to the empennage in the  zf  direction is 

designated (Z_,__ - Z_)  and is given by 
BH     Ö JF 

sh 
(ZBH - Vf - 

Zf,H(B) + Zf,B(H) - 2*~s     J      as     [««i», + (CC£>J dVf 

s  -* 

sh 
(cC|)3 as dyf (1-11) 

where (cc.)  is the span-loading on the horizontal panel for the configu- 

ration in reverse flow with both body and panels at unit angle of attack. 

In the application of equation (1-11) to the empennage, we now 

make an approximation which simplifies the calculation greatly with 

little loss of accuracy.  If the value of (cc.)  from slender-body theory 

is used in equation (1-11), we obtain the slender-body approximation to 

the normal force.  Since (cc.)  is the same in direct and reverse flow, 
I    3 

it is easily obtained.  However, we know that slender-body theory tends 

to overpredict the normal force by an amount which increases with the 

aspect ratio of the lifting surface formed by joining the exposed tail 
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panels together, the so-called tail alone.  It has been found1 that we 

can correct the slender body result for this aspect ratio effect by 

multiplying it by the ratio of the lift-curve slope of the tail alone on 

the basis of linear theory to that on the basis of slender-body theory. 

Let fdC /daJH be the lift-curve slope of the horizontal surfaces 

joined together on the basis of linear theory with an arbitrary reference 

area  S .  Then the ratio of the lift-curve slopes  X , is simply 

\ da /„ bR 
\  =  S  (1-12) 
H   2ir(sh - a)2 

Based on the same reference area, the normal force coefficient corrected 

for aspect ratio is 

-BH        -B' ,    \da/H r~h 
Z  BH Z  B ^ SR ^   (s     -  a)*    I s       l  a        f 

(ZBH-ZB^        ,    WJ ,Sh 

(1-13) 

where   (cc.)      is  the  slender-body  theory  span  loading given by 
* 3 

.    ■ sy - -' %' - y > 

from reference 16, equation (6-39).  Equation (1-13) is valid provided 

C   and  (dC /da]„  are based on the same reference area.  If  fdC /da)„ 

is per degree, then a  should be in degrees. 

In application of equation (1-13) the velocities Wx(y ) and W2(-yf) 

are determined from flow field calculations without the store present. 

Because of the store the values of Wx(yf) and W2(-y ) will be enhanced by 

"Beskin upwash."  Thus, if we assume the store is subject to a crossflow 

ipitts, W. C, Nielsen, J. N. , and Kaattari, G. E.:  "Lift and Center of 
Pressure of Wing-Body-Tail Combinations at Subsonic, Transonic, and 
Supersonic Speeds."  NACA Rept. 1307, 1957. 
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W   (see fig. 10) on the plane of the horizontal panels, an additional 

upwash W (yf) is obtained as follows 

B  f     O yf8 

Accordingly, in the application of equation (1-13) the value of a 

should be taken as 

wx(yf) + W2(-y )   W 
as =  2^  + V 7   a 1  Vf (I"16) 

oo oo  v 2 
S S *f 

The vertical fins produce a sideforce which can be calculated the 

same way as the normal force due to the horizontal fins.  Let Vx(-zf) 

be the sidewash velocity on the lower panel and V2(zf)  be that on the 

upper panel.  The sidewash angles  3  for the symmetrical and unsymmetri- 

cal parts of the flow are 

Vx(-z ) + V2(z )         Vx(-2j -V2(z ) 
ös -   2^ "    0u "  b ^        (I"17) 00 oo 

S S 

The sideforce due to the addition of the vertical panels is then 

ßjccj  dz.       (1-18) (CY)   - (Cy) 
BV T   (s  - a)2 J 

f      v    'a r 
r(s *z 2 - a4) (s * - z 2) 

cc.)    4  /-^-^ f— (1-19) 
Sv?zf2 

The value of ß   should be augmented for Beskin sidewash as follows: s 

V2(z ) + V, (-z )    V    , 
0S =  ^ *- + ^ -^ a £ zj ,1-20) 

oo oo  2 2 

S S   f 

In determining the contributions of the horizontal and vertical 

panels to the pitching moment My  and yawing moment, M2 , respectively, 
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we assume that their respective loads are concentrated at the quarter- 

chord position of the mean aerodynamic chords of the exposed panels. 

Let L      be the distance from the store center of moments to the quarter 

chord of the MAC of the horizontal panels, and let I       be the corres- 

ponding distance for the vertical panels (positive- for fins behind the 

center of moments).  The contribution of the horizontal panels to the 

pitching-moment coefficient is then 

(C)   - (C) m „T,    m 
V 

' B-L   ^ SR^R t     s 

<CZ)   - (Cj) 
Bjf "R T (I"21) 

The contribution of the vertical panels to the yawing moment coefficient 

IS 

f(Cn)   - (C )    =    gf   = - [(Cy)   - (C^)    /     (1-22) 
L   BV     n ßJf   ^g R*R     

L   BV     Y Bjf ^R 

1-4.  ROLLING MOMENT DUE TO EMPENNAGE 

First consider the rolling moments due to the horizontal panels of 

the empennage as if no vertical panels existed.  Such results will apply 

to a store with only two panels, the planar empennage case, because the 

presence of vertical panels does have the effect of reducing the rolling 

moment due to the horizontal panels.  This panel-panel interference effect 

is treated subsequently for the curciform case. 

The rolling moment due to the horizontal panels is associated with 

a  of equation (1-1).  The asymmetric angle of attack is equivalent 

to positive control deflection of the right panel and negative deflection 

of the left panel to produce negative rolling moment in an aileron manner. 

In order to determine the rolling moment, consider an application of the 

reverse flow theorem, equation (1-2), with 

ad = 0  on  Sß   ar = 0  on  Sß 

ad = au  °n  SH  ar = yf  °n  SH 

P , = P , P = P5 d   d r   3 
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We find that 

Mx = 2*~        Jf  WSH="2^   [f  auP*dSH (I-23) s
   s s   s 

since the body contributes no rolling moment.  Let (ccJ   be the span 

loading on the body with horizontal panels in reverse flow.  The local 

angle of attack a ■ yf  can be reproduced by a roll rate of p ■ Vw r   r °°s 
about the  xf  axis in the clockwise direction since the local angle of 

attack for such a condition is 

pyf 
ar = v- (1-24) 

00 
S 

Since 
t.e. 

L (cCi)s = 2       P5 dx^ (1-25) 

we may write 

sh 
Mx= -2^  J  au(cci)j dyf (1-26) 

s  a 

The rolling-moment coefficient due to the horizontal panels is thus 

M rh x (cArirvr-v;/ a»<^>5ayf s a 

where including the roll-damping term in equation (1-1) 

Wi(yf) - W2(-y ) py 
a- = ^ + vT (1_28) 

00 oo 
S S 

From equation (3-37) of reference 16, 
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-<'> = H"--'r^)("*S (sv,2 - y^X^y*2 - a4) "h h *f 

S 2V 2 sh yf 

Ky« "ft) cosh -l 
(yf

2 + a2)(sh
2 - a2) 

(yf
2 - a2)(sh

2 + a2) 
(1-29) 

In order to scale (CJ  down from slender-body theory to linear theory, 
* H 

we apply the factor  A  of equation (1-12) to obtain 

(CV 
i    vd% 

H 
u [8,    -  a)2i0 h R       a 

r J a» {ccp5 
d^i (1-30) 

This formula will determine the rolling moment due to the horizontal 

panels neglecting any interference effects due to the vertical panels, 

the planar empennage case. 

The interference effects due to the vertical panels on the rolling 

moment due to the horizontal panels can be shown by the following 

sketch. 

Let the horizontal panels have an a  distribution for which positive 

pressure occurs on the upper surface of the right panel and suction pres- 

sure on its lower surface.  The resulting panel force produces positive 

rolling moment.  On the left panel the signs are all opposite, but 

positive rolling moment is generated.  Consider now the right hand side 

of the upper panel which is undeflected.  It will generally be subject 
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to a positive pressure field associated with the flow above the right 

panel with a negative pressure field on its left surface.  The effect is 

a negative rolling moment which opposes that of the horizontal panels. 

The rolling moment due to the horizontal panels has thus been reduced by 

the presence of the undeflected upper panels by virtue of reversed roll 

developed by them through interference.  It may also be argued that the 

presence of the vertical panel presents a dam between the first and second 

quadrants which inhibits communication between these positive and negative 

pressure regions, and that this pressure difference should therefore be 

increased by the presence of the vertical panels.  While some increase in 

the rolling moment due to the horizontal panels may be ascribed to this 

factor, it is more than offset by the reverse rolling moment of the 

vertical panels on the basis of slender-body theory. 

In order to determine the rolling moment of a cruciform configu- 

ration with distribution a„(yf) on tne horizontal panels and  ß (zf) 

on the vertical panels, we write the reverse flow theorem for the vertical 

and horizontal panels with the body aligned in the free stream direction. 

JJ  adPrdSH +  jfjf ödPrdSv "   JJ  arPddSH +   JJ  *rPddSV    (I"31) 

SH SV SH SV 

Choose the direct and reverse flow conditions as follows: 

ad - au   ar " *£ 

0d - 0u   0r - zf 

Pd = Pd   Pr " P* 

J\  auPedSH +   // 0uVSV "   JJ  yf
PddSH +  JJ  zfPddSV   (I"32> 

SH SV SH SV 

In the integrals of equations (1-31) and (1-32) the integrals have the 

same signs because an upper vertical panel set to produce a positive  3 

would have a positive  a   if rolled 90 degrees clockwise without a 

change of setting.  For the reverse flow configuration with a  = yf, 
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the horizontal surfaces generate negative rolling moment (counterclockwise 

looking forward) and the same is true for the vertical surface with 

8  = zf.  Accordingly 

M*= 2tH // yfPdds«+ 2S // Zf?ddSv 
S
H SV 

s,    t.e. s     t .e. 

--*q.    /     /        V6 
dxf d^f - H.     /      /       eu

p
6 

d*f 
dz

f 
S  a     I.e. s   a     I.e. 

(1-33) 

At this point, consider the vertical and horizontal panels to be of 

identical planform so that 

s t.e. 

Mx = "4^  /  (au + 0u}  /    P6 
dxf d^f (I"34) 

S  a I.e. 

In the above expression 3   is evaluated with  zf  equal to yf.  Let the 

span loading for the reverse flow case above be 

(CCi)  = 2 J    P6 dxf (1-35) 

I.e. 

so that the rolling-moment coefficient due to both horizontal and vertical 

panels is 

s a 

The quantity a   is given by equation (1-28) and  ß   is obtained from 

equation (1-17) by including the roll-damping term 

V (-z ) - V2(z )   pz 
3u hr  ♦ ^r ^-^ 

OO 00 
S S 
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Equation (1-36) is completely analogous to equation (1-27) for the 

rolling moment due to the panels of a planar configuration.  In this case 

(cc.)   is the span loading on the panels of a cruciform configuration 

rolling in a clockwise direction facing forward at a rate equal to 

p radians per second.  The slender-body theory yields2 

x    8R2 r   on   w-l /sin 29\ _    ,-i /tan 2ö\ 1 cc,   =   cos 20 tanh   (—: r—) - cos 2v tanh   IT =—1 i'e    7T \sin 2yJ Y \tan 2-yy J 

+ ^f- K(kx) sin 40 - 2kL cos Ax K(kx) Z(A1,k1)       (1-38) 

where 

cos 20 

R = i Vs2+ S (I"39) 

=   y 2 +  ] = (1-40) 
4R2 \ t y 2/   y 2 (a4 + s. 4) f  VQ  ' ~h 

cos 2y -   (1-41) 
2R2 

kx = sin 2y (1-42) 

K(kl} = f dZ 

J Vl-^i2 sin 2 z 
= complete elliptic integral   (1-43) 

of first kind 
with modulus  kx 

-1 [sin 20\ 
I sin 2yJ *i ■ sin   ^iSirj (I-44' 

Z(A1,k1) = Jacobi zeta function (1-45) 

?Adams, G. J. and Dugan, D. W.:  Theoretical Damping in Roll and Rolling 
Moment Due to Differential Wing Incidence for Slender Cruciform Wings 
and Wing-Body Combinations.:  NACA Rept. 1088, 1952, Eq. (18). 
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KO^)    ZCAj.ki)    =   K{kx)    E(A1,k1)    -   Edr/^kJ    F(A1,k1) (1-46) 

A, 

^(Ajjk^   = r —=   incomplete   elliptic   integral 
sin2   z~ of  the   first  kind 

7r/2 

E(7r/2,kl) =  /     Vl-kj2 sin2 z dz = complete elliptic integral 
J of second kind 

(1-48) 

E(A1,k1) =  /   vl-k1
2 sin2 z dz = incomplete elliptic integral 

of second kind 

(1-49) 

In equation (1-37) as  0 -* yy   that is, yf -♦ a, the first of the two 
principal terms becomes indeterminate.  It is possible to show that 

*.  [cos 20  tanh- (ß^) -  cos 2T tanh"' (W)] L 
9 -* y 

- cos 2y  log (cos 2«y) (1-50) 

Thus, the span loading at the juncture between the panel and body, 

yf = 
a> is 

(ccj  = SB- ["_ cos 2y  log (cos 27) + 0.5 K(k,) sin 40]      (1-51) 

As equation (1-36) stands it yields the rolling moment coefficient 

on the basis of slender-body theory. To obtain the linear theory esti- 

mate, we must multiply the right-hand side by V from equation (1-12) 

to obtain 

1  W A 
/"  (o  + 8 )(cc )  dy (1-52) 

f HV     T (s-a)2|R  J     u    u    ü 6   f 
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While the fraction of Cp     associated with  a  or 3   can be considered 

due to asymmetrical flow condition on the panels in question, the effect 

of any one set of panels is manifest by pressures on both sets of 

panels. 
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APPENDIX II 

EQUATIONS OF MOTION OF A RIGID 
BODY WITH MASS AND INERTIA ASYMMETRIES 

II-l.  INTRODUCTION 

The purpose of this appendix is to present the derivation of the 

equations of motion of a rigid body with mass and inertia asymmetries. 

By mass asymmetry we mean that the center of mass is not at the origin 

of the coordinate system fixed in the body and used in the equations of 

motion.  Generally the external store will have axes of geometrical 

symmetry which will be used in determining the forces and moments acting 

on it, but the center of mass in certain applications will not lie on 

these axes of symmetry.  By inertia asymmetry, we mean that the principal 

axes of inertia do not coincide with the geometric axes of symmetry of 

the store.  For these geometric axes, the tensor of inertia will thus 

possess off-diagonal terms, the so-called products of inertia. 

II-2.  AXIS SYSTEMS AND EULERIAN ANGLES 

In the derivation of the equations of motion consider first an 

inertial set of axes, (£, rj, £) , fixed in the aircraft which is in recti- 

linear flight at uniform velocity.  Then a system of axes (x, y, z) 

fixed in the store is defined.  The x  axis is forward along the store 

longitudinal axis, the  y  axis is positive to the right looking forward, 

and the  z  axis is vertical downward so that a right-handed system 

exists.  The  ^, TJ, ^  system is an airplane fixed system with  £ mea- 

sured forward along the fuselage longitudinal axis, rj  laterally to the 

right and, £ vertically downward.  The origin is at the fuselage nose. 

In order to determine the orientation of the store with respect 

to the  £, T], C,     axes, a system of angles will be introduced.  The 

system of angles to be used is that shown in figure 9.  The origins of 

the inertial and store axis systems are taken at the same point to show 

the angular orientation.  The system consists of three rotations in the 

yaw, pitch, roll sequence.  This order is important.  The three angles 

will be designated 
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¥ yaw 

9  pitch 

<D  roll 

II-3.  DIFFERENTIAL EQUATIONS FOR THE ORIENTATION ANGLES 

In specifying the position and orientation of the store relative 

to the aircraft, we will determine the coordinates  |, rj, and £  of 

the origin of the x, y, z  coordinate system and the angular quantities 

¥, 9, and <t>.     The equations of motion will, however, be written in terms 

of the following quantities and their time derivatives  £, TJ, £, p, q, r. 

Here p, q, and r  are the components of the store angular velocity about 

the  x, y, and z  axes, respectively.  A set of differential equations 

is required for  Y, 9, and $  in terms of  p, q, and r which are to 

be integrated along with the equations of motion to keep track of the 

angular orientation of the store.  These equations are from reference 15. 

¥  =   (q  sin <t>  +   r  cos  <J>)/cos   9 

9 =  q cos <t>  -   r  sin <J> (II-l) 

<t>  =  p +  q  sin <&  tan 9  +   r  cos <J>  tan 9 

With initial values of the orientation parameters  ¥, 9, and <t>, the 

foregoing equation can be integrated to obtain the variations of these 

quantities with time. 

From the values of  ¥,9, and <t> it is possible to determine the 

orientation of the  x, y, z  axes with respect to the  |, TJ, £  in the 

usual direction cosine way.  That is 
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n 

c 

*\ 

w 

where (ref. 15) 

cos 8 cos ¥ 

MII-2) 

H- cos 9 sin Y 

-sin 6 

sin $ sin 9 cos ¥ 
-cos <t> sin ¥ 

sin $ sin 6 sin Y 
+ cos $ cos Y 

sin 0 cos 9 

cos $ sin 9 cos ¥ 
+ sin * sin ¥ 

cos $ sin 9 sin ¥ 
-sin d> cos Y 

cos $ cos 9 
J 

These data are also necessary in converting forces calculated in 

the x, y, z  system to the  £, r\,   C,     system. 

II-4.  TRANSLATIONAL EQUATIONS OF MOTION 

We will now write the equations of motion for translation of the 

origin of the  x, y, z body axes.  The origin is not assumed to be at 

the body center of mass.  Consider the following sketch. 

e.g. 
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Let "a be the vector from the origin of the inertial system, point P, 

to the origin of the body system, point 0. Let r' be the vector from 

the origin of the body axes to the body center of mass. 

7' = "ex x + "e y + 7, z (II-3) 

Let  r be the vector from the origin of the inertial system to the 

body center of mass.  Then 

7 = "a + 7' (II-4) 

If  F  is the vector force acting on the body the equation of trans- 

lational motion is 

dt 

This equation will now be expressed in terms of the force components 

(F ,F , F ) along x, y, and z; the position coordinates (x, y, z) of 

the body center of mass; and the components of the body angular velocity 

a) given by 

u> = "ex P + "e  a + "ez r (II-6) 

To establish the acceleration vector equation (II-4) is differentiated 

with respect to time 

dr = da  drl ) 
dt  dt   dt K±     n 

= || + öS X 7' (II-8) 

Differentiating again yields 

at2   dt2   dt dt 
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Since 

ff = "?x P + ^y  q + "?z   r (11-10) 

we   find 

d27 
dt2       dt2 

d2*a* 

g + (exP+eyq+ez;)xT'+^xpxT) 

T"ex p + "ey  q + "ez  rJ    xr'   +  ü^TD-T'J    - 7«   (Gü-CDJ dt2  + 

or 

^ = «^a + -g"       (pq -   r)y +   (pr +   q) z  -  x (q2  +   r2) 
dt2        dt2 x   L J 

+ "e        (pq +   r)x +   (qr  -  p)z   - y(p2  +  r2) 

+ "ez      (pr  -   q)x  +   (qr  +   p)7 -   z"(p2   +   q2)| (11-11) 

which  from equation   (II-5)   is  equal  to 

^fX •  i     F*e     +   F "e     +   F "e (11-12) 
dt2       in    [xx yy z   zj 

The acceleration of  0  relative to  P can be expressed in terms 

of the moving body coordinate system as follows: 

—- = x "e + y 7 + zje     + öT X 4r (H-13) , 2    o x   -*o y   o z      dt 

where -rr is the velocity of  0  relative to  P  and may be expressed 

in terms of components along the moving body coordinate system 

x , y , and z .  The body angular velocity a)  is given by equation 

(II-6).  Therefore 
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d£a  .. —   .. —   •• -     •    •  x- = x e  + y e  + z e  + (qz  - y r)e 
-.■2    ox   ;o y   o z    ^ o o  x 

"N 

+ (xQr - PzQ)ey + (pyQ - xQq) ez (11-14) 

Combining equations (11-11), (11-12), and (11-14) gives 

Fx     r — • — " — i 
XQ = — - |_-(q2 + r2)x + (pq - r) y + (pr + q)zj - (qzQ - yQr) 

Fv    r        * — — * — i 
Y0 = ~  - L(pq + r)x " (p2 + r2)y + (qr - p)zj - (xQr - pzQ) 

Fz      r        ■ — ' — — T zQ = — -  [(pr - q)x + (qr + p)y - (p2 + q2)zj - (pyQ - xQq) 

(H-15) 

The accelerations along the inertial axes are then 

t X o 

n - H yQ 

Ji z -   o_ 

where the transformation matrix is given by equation (II-2). 

The final equations of translational motion in the inertial coor- 
dinate system are now written using the following direction cosine 

notation for the  A   matrix of equation II-2 

w- 
F cos (£,x) cos (£ ,y) cos (£fz) 

cos (TJ,X) cos (Tj,y) cos (T],Z) 

cos (£,x) cos (C,y) cos K>z) 
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£ + I y cos (£,z) - z cos (£, y)Jp + [z cos (f3,x) - x cos (£,z)Jq 

+ [x cos (£,y) - y cos (?3,x)Jr 

rFx   - - • i ■ LV + x(q2 + r2) - ypq - zpr - qzQ + ryQJ cos (£,x) 

+ [-^ - xpq + y(p2 + r2) - zqr + pzQ - rxQJ cos (£,y) 

rFz     - '   1 
+   Lm~ ~  xpr  " yqr  +   Z(p2  +   q2)   +  qxo  "  pyoJ  COS   (^,z) 

(11-16) 

T) + |y cos (r),z) - z cos (T],y)Jp + [z cos (T],X) - x cos (TJ,Z) q 

+ [x cos (T),y) - y cos (TJ,X)J r 

rF       - - - "  1 
=  L"5p + x(<52 + r2>   " yp^ " zPr " 3Z

0 
+ ^o-  COS   (T1'X^ 

+   ["m   " xpq + y(p2  +  r2)   "  zqr +  pzo "  rxoJ cos   (r|,y) 

+   [— -  xpr  -  yqr  +   z(p2   +   q2)   +   qxQ  -  pyQJ   cos   (r|,z) 

(II-17) 

S + I Y cos (C,z) - 2 cos (C,y)j p + \jz   cos (£,x) - x cos (£,z)J q 

+ [x cos K,y) - y cos (C,x)Jr 

rF        - -    - * 1 S Ivt  + X(q2 + r2) " yPq " zpr ' qZo + ryoJ COS (^,X) 

rF    _     _ _ . "I 
+  -^ - xpq + y(p2 + r2) - zqr + pz  - rx J cos (£,y) 

•F r z    -      -      - ■ i + [—  - xpr + yqr + z (p2 + q2) + qxQ - pyQJcos (£,z) 

(11-18) 
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I1-5.  EQUATIONS OF ROTATIONAL MOTION 

The equations of rotational motion will be written in terms of 

body axes because the moments and products of inertia are not functions 

of time in these axes.  Also, the moments due to aerodynamic forces are 

calculated in this axis system which is an additional convenience. 

Consider a general body with axes  x, y, z  having its origin at point 

0  and an inertial system  £, r\t   £  having its origin at point  P.  Let 

~p    be the position vector of an element of mass in the inertial system 

and ~p'  be the position vector in the body system. 

-e.g. 

Let  L   be the torque of the forces acting on the body with respect 

to point  P.  Then the law of the conservation of angular momentum in 

inertial coordinates is 

L  = 
P 

—2 
dt (H-19) 

where the angular momentum vector is given by 

H •/ P X^dm (11-20) 

the integral being taken over the body mass. 

For the store the origin  0, of the body system, will generally be 

offset from the body center of gravity by position vector  r', and the 

tensor of inertia for the y, z  axes will generally contain products 

of inertia.  The torque will be known with respect to the origin  0, 

and the angular velocity is given by equation (II-6) in terms of 

components  p, q, and r  in body axes.  We will now transform equation 
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(11-19) to body axes in terms of the foregoing quantities.  The angular 

momentum becomes 

"p =   J{~*  +^%)   X ^   (? + ~P'] dm (II-21) 

Let 

\*f? ,X^&T dm (11-22) 

so  that 

Hp=   .   X /I dm +/P'X|* + ^C 

and 

/S^ + Ix/idm + i dH rj5— „r? TJ— dH 

+   /4ldraXll+  /P'dl» X S I11"23' 

Certain simplifications arise in the foregoing expression from the 

property of the center of mass 

/ 
fp' - r') dm = 0 (11-24) 

so that 

/ ~p ' dm = r' m (II-25) 

and 

/&*■-£/?' *■-■$ (II"26) 

Also 
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J 0 dm = -^r  J-p'   dm + -^r  J"a  dm 

d2r' d2a 
m "dt2" +  m dt2 

d     /—*■      —►. % d2 a 
m  dt"   ^ X  r   '   +  m dt2" 

=  m [Sx^+g x?.+|g] 

= m ||§- = ~? (II-27) 

Accordingly, we find from equation (11-19) that 

L = a x 1   m ^rr x I m -£- X —■ + m "r' x 4rl" + dt x \dt        dt/ Jp "   ° * r   T IU dt * Vdt        dt7 dt        dt dt*        dt 

which becomes 

2->  dH 
L_ = "a x "? + m "r' x ^# + -^ (11-28) 

Now define 

,2T+  dl? 
Lo^ m r' X oT2^ "df (II"29) 

where L   is the torque with respect to the  0  origin so that 

hQ  = "L  - "a x "F (11-30) 

Equation (11-29) for the conservation of angular momentum with respect 

to origin  0 has the same form as that with respect to origin  P plus 

an additional term. 

With regard to the three terms of equation (11-29), the torque L 

will have three components along the  x, y, z  axes 

TT='eM+'eM+"eM„ (11-31) o   xx   y y   z z 
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The acceleration vector d2aVdt2  has components  £, r\9   and £  which can 

be expressed in terms of components  x , y , and z   along the  x, y, z 

axes as follows 

x ■ £ cos (x,£) + T)  cos (X,TJ) + C cos (x>0 > 

y  = ? cos (y,£) + T)  cos (y,T)) + £ cos (y,£)  >      (11-32) 

z  = ^ cos (z,£) + n cos (z,r|) + C cos (z,£) 

The direction cosines in the above equation are obtained from the trans- 

pose of [AJ, equation (II-2). 

With the following notation 

r'=e  x+e  y+e  z (II-33) 

we have 

—,   d2a   -♦ 
mr' X TT2 = me [y(z0 + py0 -qx0) - z(yQ + rxQ - pzo)] 

+ mTy [ z(xo + qzQ - ryQ) - X(ZQ + pyQ - qxQ)] 

+ mez [x(yo + rxQ - p^) - y(2Q  + qzQ - r£Q)]  (11-34) 

With regard to the remaining term in equation (11-29), we have 

from equation (11-22) 

dH 

dt   dt J   P  x dt dm 

We first evaluate 7T  and then differentiate o 
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"**o = J ?' X lit" dm = J "?' x  (^ x "p') dm -J [«(p' . "p') - "p ' (?' ' 3)] dm 

I o>(x2 + y2 + z2)dm -  / ("e  x + e  y + "e  z) (px + qy + rz)dm 

[p   (y2 + z2)dm - q / xy dm - r f xz dmj 

?  -p  xy dm + q j (x2 + z2) dm - r   yz dm 

I -p  xz dm - q  yz dm + r I (x2 + y2) dm + e. 

The moments and products of inertia are defined as follows: 

l xx 

yy 

zz 

= / (y2 + z2) dm   I   = J xy dm ^ 

./„ 
■/ 

2 + z2) dm   I  = | xz dm xz 

= I (x2 + y2) dm   I   = I yz dm 

(H-35) 

(11-36) 

so that equation (11-35) becomes 

^o = *x [PJXX - ^xy " rIxzJ 

f- pi   -I- ql   - rl  1 
I   xy    yy    yzJ + e. 

+ e \-  pi   - ql   + rl L c  xz   ^ yz     zzj 

(II-37) 

In body coordinates the moments and products of inertia are not functions 

of time for a rigid body.  With the help of the relationships 
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de 

we find 

x -+  > 
dt   ey r - ez q - 03 X ex 

de 

"dt    -Tz   P - "ex   r «  üJ x "e 

d*z       - 
^T=  ex  q - "e    p = ü) x "e 

y ^ 

dH 
o  -► 

dt eT Tpl - ql   - rl   + rq(I   - I  ) x [  xx   ^ xy xz    ^v zz    yy' 

- (q2 - r2) I   - p(ql   - rl  )| xyi '  yz   r M xz     xy J 

—► r + e  - pl  + ql   - rl  + rp(I   - I  ) y L xy    yy    yz    r xx   zz7 

- (r2 - p2) I   - q(rl   - pl  )1 v *  '      xz   M'  xy   r yz J 

+ ez [" PJxz - qIyz + rIzz + Pq(Iyy " Ixx) 

- (p2 - q«)I   - r(plyz - qlxz)] 

(11-38) 

(11-39) 

Equating the components of equation (11-31) to the sum of equations 

(11-34) and (11-39) yields the three desired equations of rotational 

motion 
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Mx  =   m[y(zo  +  pyo  -  qxo)   -  z(yQ  +   rxQ  -  pz0)]      +   plxx  -  qlxy  -  rlxz 

+   r*(Izz   "   V   "   <q2   "   r2)IV-   "  P<qIxz   "  "xy' 

r_   .. . . _   .. • .       -I 
M    =  m  z(x     +   qz     -  ry  )   -  x(z_  +  pv     -  qx  )      -  pi       +   ql       -   rl y Lvo       ^ o Jo o       sr2o       ^ oJ * xy yy yz 

+ rp(I   - I  ) - (r2 - p2)I   - q(rl   - pi  ) *     xx    zz'   v     ^   xz   ^   xy   *  yz7 

f     ••     •     •     _••     •     •  ^   •      •      • 

M = m x(y  + rx  - pz ) - y(x  + qz  - rx )  - pi   - ql   + rl z    L  o    o  *  o   ■*  o   ^ o    o J   r xz   M yz     zz 

+ pq(l   - I  ) - (p2 - q2)I   - r(pl   - ql  ) 
yy  xx xy    yz   xz 

(11-40) 

The rotational equations of motion in the inertial coordinate system, 

using equation (11-32), are 

m [y cos (z,£) - z cos (y,7;)^ + m f y cos (z,rj) - z cos (y, rj) j rj 

+ m [y cos (z,0 - z cos (y,C)]c + IXXP - Ixyq - Ixzr 

= M  - rq(I   - I  ) + (q2 - r2)I   + p(ql   - rl  ) x    M  zz    yy'    ^        yz       xz     xy7 

- m [y(pyo  "   qxQ)   -   z(rxQ  -  pzQ)J (11-41) 

m I z   cos   (x,^)   -  x  cos   (z,£) U   +  m I z  cos   (x, i))   -  x  cos   (z, j])\ j\ 

+  m [z   cos   (x,r)   -  x   cos   (z,OjC   -   *xyP  +   I^q -   Iyzr 

=  M    -  rp(I       -   I     )   +   (r2   -  p2)I       +   q(rl        -  pi     ) y r     xx zz7 v ^  '   xz       ^       xy       ^ yz' 

- m [z(qzo  -   ryQ)    -  x(pyo  -  qxQ)J (11-42) 

144 



m [x cos (y,£) - y cos (x,!;)]^ + m [x cos (y,rj) - y cos (X,T])1T] 

+ m [x cos (y,C) - y cos (x,C)J I  - IXZP - Iyzq + IZ2,r 

M     -  pq(I        -   I     )   +   (p2   -  q2)I       +   r(pl        -  ql      ) z yy xx ^ M       xy * yz       M xz' 

- m [x(rxQ  -  pzQ)    -  y(qzQ  "   ryo)J (11-43) 

II-6.  OVERALL SOLUTION OF EQUATIONS OF MOTION 

Certain input data and initial conditions are to be specified 

before any integration of the equations of motion can be performed. 

First the input data must include the body mass, m, and the moments and 

products of inertia.  Secondly the offset of the origin of the body 

coordinate system from the center of mass must be specified.  We also 

need the initial body orientation as specified by the three initial 

angles.  With regard to initial conditions, the initial position 

(£, i\,   O   of the origin of the body coordinate system and its 

velocity (£, T\ , £) must be specified together with the initial angular 

velocity components  p, q, and r.  We may then integrate equations 

(11-16) through (11-18) and equations (11-41) through (11-43) to determine 

£> T)S   C> P» q> and r  as functions of time.  Simultaneously we must 

integrate equation (II-l) to keep track of the body orientation.  The 

aerodynamic force and moment components are calculated step-by-step 

during the integration of the trajectory. 
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APPENDIX III 

A REFINED THEORY FOR THE CALCULATION OF NORMAL- 
AND SIDE-FORCE DISTRIBUTIONS ON BODIES OF 

REVOLUTION IN NONUNIFORM FLOW 

III-l.  INTRODUCTION 

This appendix is concerned with a method for determining the axial 

distributions of normal and side-force on bodies of revolution immersed 

in nonuniform, irrotational, incompressible flow fields.  This theory does 

not employ the slender body assumption nor the linear form of the flow 

tangency boundary condition.  It is, therefore, considered more refined 

than the body force calculation methods described in section 5.2. 

In the following sections the general flow tangency boundary con- 

dition will be formulated and specialized for a body of revolution.  It 

will be shown how the problem can be represented as a superposition of 

three different distributions of discrete singularities laid out along 

the body axis.  A boundary condition is applied at the body surface for 

each distribution.  The flow tangency formulations allow for the deter- 

mination of the unknown singularity strengths which are necessary for the 

computation of the resultant velocity on the body surface.  The pressure 

coefficient is then calculated from the resultant velocity and finally 

the body force distributions are expressed in terms of integrals of the 

pressure coefficient around the surface of the body of revolution. 

Effects of buoyancy are not accounted for in this method but may be 

determined independently and their effects added to the results of this 

appendix. 

II1-2.  FLOW TANGENCY BOUNDARY CONDITION APPLIED AT BODY SURFACE 

The coordinate systems and part of the nomenclature used in this 

appendix are indicated in the following sketch.  In the cylindrical 

coordinate system (x,r,0), the nonuniform free-stream velocity vector 

is given by 

"^(x.r,©) = [v(x) cos 0  + W(x) sin el"?r 

+   [w(x)   cos  0  +  V(x)   sin  e\~eQ  +  U(x)"e*x (III-l) 
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where  U(x), V(x), and W(x)  are the components of the nonuniform free- 

stream velocity in the  x, y, and z  directions, respectively. 

Horizontal 
doublet axis 

-Vertical doublet 
axis 

In general, the body surface is specified by 

F(x,r,0) = 0,    0£x££t (III-2) 

Then the unit normal vector to the body surface is given by1 

-£ m     grad F 
|grad F| 

where 

grad P - &"? + ^^ H Tn + |^ "£ dr  r   r do  0   dx  x J 

(III-3) 

The perturbation flow field induced by the body is characterized by a 

perturbation velocity vector  q(x,r,0) defined as 

xHarry F. Davis, Introduction to Vector Analysis, Allyn and Bacon, Inc., 
Boston, 1962, p. 151. 
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"q(x,r,0) = ur(x,r,e)"er + ue (x , r, 0)"e*0 + ux(x,r,0)"e> (III-4) 

The components of the perturbation velocity are  u , u   uQ  in the x  r  0 
x, r, and 0  directions, respectively.  The flow tangency boundary con- 

dition is satisfied at the body surface and formulated as follows 

[^1x^,0) + "q(x,r,0)]  -*n«0 (III-5) 

where the item inside the brackets represents the resultant velocity 

vector, V   After replacing the velocity and unit vectors by equations 

(III-l), (III-3) and (III-4), the result is 

[v(x) cos G  + W(x) sin 0 + ur(x,r,0)l 4^ * [w(x) cos 0 

+ V(x) sin G +  u0(x,r,0)]  I || + [u(x) + ux(x,r,0)] |£ - 0 >    (III-6) 

F(x,r,0) =0;   0 <' x <' i 

Equation (III-6) represents the non-linear flow tangency condition for 

any body situated in a non-uniform flow.  In the treatment that follows 

in this appendix, the only constraint will be the condition of the body 

being a closed body of revolution represented by 

F(x,r,0) = r - R(x) = 0 or r = R(x) 

OF = i   dF = _ dR(x)   OF 
oT .   »  5x      dx »  ^0 

(IH-7) 

The flow tangency boundary condition can therefore be rewritten for a 

body of revolution as follows 

ur(x,r,0) = [u(x) + ux(x,r,0)] ^^~ -  V(x) cos 0 - W(x) sin 0> 

>(III-8) 

r = R(x) ;    0 £ x £ ic 

Note that perturbation velocity  u (x,r,0)  is not neglected as is done 

in linearized flow theory. 

The boundary conditions given by equation (III-8) will be split 

in three parts in such a way that the problem of a body of revolution 
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situated in a nonuniform flow field may be expressed as the superposition 

of three separate problems.  The three problems are: 

(1)  Axisymmetric flow past a body of revolution with the flow 

field characterized by velocity U(x); axisymmetric problem 

with boundary condition 

ur (x,r) = [u(x) + ux (x,r)j ^£<1 

r = R(x) ;    0 £ x £ i 

(HI-9) 

(2) Lateral flow past the same body with the flow field characterized 

by velocity V(x); sidewash problem with boundary condition 

ur   (x,r,9) = u (x,r,0) d*(v
x) - V(x) cos 0 

rD,V XD,V x 

r = R(x);    0 £ x £ ls 

(3) Lateral flow past the same body with the flow field characterized 

by velocity W(x); upwash problem with boundary condition 

"D,W D,W 
ur^ ^  (x,r,0) = ux^ Jx,r,0) ^J£L  _ w(x) sin Q 

r = R(x) ;    0 £ x £ 

The disturbance flow fields induced by the body in problems (1), (2) 

and (3) can be represented by suitable distributions of point sources, 

horizontal doublets with their axes opposed to sidewash  V(x), vertical 

doublets with their axes opposed to upwash W(x).  The perturbation 

velocity components  urs, urD v, urD w, and uXs, UXQ V, UXD W  and 

u^n v, UQD are induced by the sources (subscript  s), horizontal 

doublets (subscript  D,V) and vertical doublets (subscript D,W). 

According to the superposition principle, 

0(x,r,0) = 0g(x,r) + 0D v(x,r,0) + 0D  (x,r,0) 

u (x,r,9) = u  (x,r) + u    (x,r,0) + u    (x,r,0) 
xs        XD,V D,W 

(Continued on next page) 
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x,r,9) )   (III-] u (x,r,0) = u  (x,r) + u    (x,r,0) + u    (x,r,9) )   (111-12) 
r s        rD,V rD,W 

ufl(x,r,0) = ufl   (x,r,9) + uR        (x,r,0) 
ÖD,V ÜD,W 

The expressions for the velocity components are given in the next section 

and then substituted in the boundary condition (III-9) through (III-ll). 

III-2.  PERTURBATION VELOCITIES INDUCED BY SOURCES AND DOUBLETS 
DISCRETE REPRESENTATIONS OF THE BOUNDARY CONDITIONS 

In this section, the three problems mentioned above will be dealt 

with separately.  The boundary conditions will be expressed first in 

integral form and then in discrete form allowing for the determination 

of the singularity strengths for each of the three problems. 

The axisymmetric problem may be represented by a suitable distri- 

bution of point sources along the axis of the body of revolution in the 

interval  0 <^ x £ I   .  Let  q = q(x)  be the unknown source strength 

per unit length of a continuous distribution.  The perturbation potential 

and velocity components induced by the source distribution at a field- 

point (x,r,<9) are given by:2 

*s(x .*»--*/ q<5) J*L 
[(x - |)ä + r2]1 A 

00« oq>s        1  f ur (x>r) = "ST" 47 J 

ux (x,r) 
s 

ö0S = i   f 4TT J 

q(5) 

q(€) 

[(x - £)2 + r2] 3/2 
d<; )   (111-13) 

x - £ 

[(x - $)» + r2]3/2 

According to the boundary condition (III-9) associated with the first 

problem, the source strength must satisfy the following integral equation 

2K. Karamcheti, Principles of Ideal-Fluid Aerodynamics. 
Inc., New York, 1966, p. 574 

Wiley and Sons, 
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q(^) 
[(x  -  £)2  +   r2] 3/2 

U(x)   + 
> 

JL r 
4TT   J q(?) 

x  -  $ 
[(x  -  U2  +   r2] 

3/2 
dR(x) 

dx (111-14) 

1 

/ 

r  =   R(x) ;      0 £ x £  i€ 

q(x) dx = 0   since the body is closed-^ 

Explicit determination of  q(x)  from the above equations is not readily 

possible.  Instead, an approximate procedure is adopted based on an axial 

distribution of a finite number of discrete point sources.  The no-flow 

boundary condition is applied at a finite set of control points on the 

body surface.  The strength of the discrete point source is related to 

the continuous source strength distribution as follows 

Hs  = q<$) A£ 
i 

(111-15) 

Then the perturbation velocities induced at a field point (x,r,0) by a 

finite set of point sources are obtained by summing their individual 

effects.  For  n discrete sources the results are 

n 

Vx,r) =^£ % r(x.x.;+ra]3A 
1=1     L      1       J 

-\ 

UxJX>r) = 47 Y. 
x - x. 

f-  Si [(x - x.)2 + r2l 
1=1      L       1        J 

3/2 

(III-16) 

Substituting these expressions into equation (III-9) and applying the 

boundary condition at  n - 2  control points f x, , r. = R(x^) , 

k = 1,2,...n-2J  located on the surface of the body of revolution yields 

the first condition for the axisymmetric problem. 
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dR(xk) 
1  V     R(xk) - (xk - x.) —^- dR(xk) 

dx 

(111-17) 

Oixk(!s;    k = 1,2,...n-2 

The second condition is given by the fact that the body is closed. 

n 

4TT 2. Hs  = 0 (111-18) 
i 

1=1 

To allow for the existence of a stagnation point at the nose of the body, 

the component of the total velocity in the x-direction must equal zero 

at  x = 0.  Since that component is given by the sum of U(x = 0) and 

ux (x = 0, r = 0), equation (111-16), the third condition is •s 

11  ^8. 

4^7 ]T 7T - U(x = 0) (111-19) 
1=1 

The above three equations constitute a set of n  equations in  n  unknown 

source strengths from which the  M-s •  values of the discrete point sources 

can be determined.  Body radius  R  and the longitudinal component  U  of 

the nonuniform free stream  V^ must be specified at stations  x,  along 

the body axis, assuming there is negligible variation of  U  in the 

lateral directions. 

The second or sidewash problem is represented by a distribution of 

horizontal doublets along the axis of the body with the axis of the doub- 

lets opposing the direction of the nonuniform sidewash  V(x).  Let 

u^ = iiyCx)  be the unknown strength per unit length of the continuous 

doublet distribution.  The perturbation potential and velocity components 

induced by the doublet distribution may be obtained from those given in 

reference cited immediately above through a simple coordinate trans- 

formation on the angle 9.     The results are 
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Vv(x „.   if, ,,.      r cos 9 
i + r*!»/« 

d? 1 
^   i  r s  ,fil    cos e  

dr. 

-i/» 

ufl   (x,r,0) - 
D,V 

u    (x,r,e) 
XD,V 

s ,.v  rg cos e  _> 

^ [(x - 5). + r.]^ 
d? 

1 d*V     1 f  s „ ...      sin 0 

>  (111-20) 

d^ 

Ö0V     3   fs M ,fil   (x - £)r cos 9 

Substitution of the above expressions for the perturbation velocities in 

the boundary condition (111-10) would result in an integral equation 

from which it is not readily possible to determine the unknown, continuous 

doublet distribution  ii^(x).  Instead, an approximate scheme can be 

devised based on a distribution of discrete, horizontal doublets on the 

body axis.  The strength  JJLQ . y  of such a doublet is related to the 
i» 

continuous doublet distribution for the sidewash problem according to 

4).,v - ^} ^ (111-21) 

The perturbation velocities induced at a field point (x,r,9) by a finite 

set of horizontal doublets are obtained by summing their individual 

effects.  For  n  discrete, horizontal doublets the results are 
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LL 

/ m COS     9 
rD,V 

D.,V y j'  
A     [(x   -  x.)2  +   r2l3/ 
1=1     L i J 

3   cos   9 
4TT 

V,vr? 

f-    [(x  -  x.)2  +   r2] 
1=1    L x J 

75 5/2 

ufl        (x,r,6)   =  - 
ÜD,V 

u (x,r,0)   =  - 

sin 
4TT 

n 

i 
M D, .V 

l—     [(x   -  x.)2   +   r2l 
i=i    L 1 J 

7« 

x 
D,V 

3   cos   9 
4TT 

n V >vr(x - x.) 

it!    [(x-x^^r.]5/» 

(111-22) 

Insertion of  these  expressions   into equation   (111-10)   and  applying  the 

boundary condition  at     n     points       x, ,   r,    =   R(x,),   k =   l,2,...n 

distributed  on  the   surface  of  the  body of  revolution  yields 

n "^D.,V 

^i?i b\-*L>* + *wY" 

R( xk> - (xk  ■ -x,) 
dR(xk'l 

dx 

<xk - xi'2 +   R2 (xk)       J 
V(xk) (111-23) 1   -   3R(xk) 

0   lxk  1^5 k =  1,2,...n 

The above expression represents a set of  n  equations in  n  unknown 

doublet strengths from which the  u.^ . v values of the discrete doublets 

can be determined.  Body radius  R  and the sidewash component  V  of 

the nonuniform free stream V^ must be specified at stations  x,  along 

the body axis, assuming there is negligible variation in the value of 

V  from the body axis to its surface. 
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The third or upwash problem is represented by a distribution of verti- 

cal doublets along the body axis with the doublet axis opposing the 

direction of the nonuniform upwash, W(x).  Let  u^ = M-.(x)  be the un- 

known strength per unit length of the continuous doublet distribution. 

The perturbation potential and velocity components induced by this con- 

tinuous doublet distribution may be obtained directly from the reference 

cited previously. 

0D w(x,r,0) 
l_    f  S „ yCv  r cos 6  

u 

4TT 

**W 

d^ 

■D,W dr   47T Jo  "W    [( x _ ?)a + r2j 2/3 d^ 

ufl   (x,r,0) ÖD,W 

4ir J U(?) [(x - 02 + r*y/s «a? 

1 ö*w     1    rs   ... cos 9  
'"ST  *   J.       *W    [(x - «>• + r-]»* 

d? 

u 
ä«w 

D,W 

/       ON       vw 3    r nU) . (x - g) r sin Q 

[<x - t)- ^ + rc 

[111-24) 

Substitution of the above expressions for the perturbation velocities in 

the boundary condition (III-ll) would again result in an integral equation 

from which the unknown, continuous doublet distribution  Mvj(x)  cannot 

be readily determined.  As for the case discussed above, this problem 

can also be solved by means of an approximate method based on a distri- 

bution of discrete, vertical doublets on the body axis.  The strength 

M-D • W  °f such a doublet is related to the continuous doublet distribution 1 > 
for the upwash problem as follows 

II Di,w" *»m A* ;III-25) 
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The perturbation velocities induced at a field point (x,r,0) by a finite 

set of vertical doublets are obtained by adding their individual effects. 

For  n  discrete, vertical doublets the results are 

u    (x,r,0) = 
D,W 

sin 0    V^        i* in 0    ST     
47r  A  [(x - x.)2 + r2l 

1=1  L       l        J 
3/2 

~N 

3 sin 
4TT 

n 

E 
u Di,WJ 

1=! [(x - xi)2 + r2Y/2 

un        (x,r,0) = 40 D,W 

cos Q 
4TT 

Di,W y   
t    [(x-x,)^ r2] » + r2'^ 

x D,W 
(x,r,0) = - 

3 sin 0 
4TT 

V,Wr(X ~ Xi> 

^ T(x - x.)2 + r2]s/2' 
1=1 L     1      J 
E 

(111-26) 

Inserting these expressions into equation (III-ll) and applying the 

boundary condition at  n points | x, , r, = R(x,) , k ■ 1,2,...111  distri- 

buted on the surface of the body of revolution yields the following result 

4w fek-v1*^']^ 

1 - 3R(xk) 
R(: *k>   " <*k" 

x 0 
dR(xk)n 

dx 

<Xk- -*i>2 + R2(xk)    J 
- W(xk) (111-27) 

0 1 xk 1 is;    k = 1,2,...n 

The above expression represents a set of  n  equations in  n  unknown 

doublet strengths from which the  |iD. w  values of the discrete, vertical 

doublets can be calculated.  Body radius  R and the upwash component 

156 



W must be specified at stations  x,  along the body axis, assuming 

there is negligible variation in the value of W  from the body axis to 

its surface. 

Once the strengths of the discrete sources, horizontal and vertical 

doublets have been determined, the resultant velocity and the pressure 

coefficient can be calculated on the body surface by an application of 

the superposition principles stated in equation (111-12) as shown in the 

next section. 

III-4.  PRESSURE COEFFICIENT ON BODY SURFACE AND NORMAL- AND SIDE-FORCE 
DISTRIBUTIONS ALONG BODY AXIS 

The pressure at any point on the body surface is related to the 

resultant velocity through the Bernoulli equation 

P " Poo VR2 
C  = 1  - 1 - -^- (111-28) P  £PV 

s        s 

The reference velocity is taken as the velocity the body (store) sees 

at infinity, denoted  v<» .  The nonuniform free stream velocity  V^ 

characterizes the local flow field in which the body is immersed, and 

is given by equation (III-l) .  The resultant velocity "\f_  is obtained 

by adding the components of the free stream to the appropriate pertur- 

bation velocities induced by the sources and the horizontal and vertical 

doublets in accordance with the superposition principle (111-12). 

VR(x,r,9) = [u(x) + u  (x,r,) + u    (x,r,6>) + u    (x,rt0)l "e 
R L        Xs XD,V XD,W      J X 

+ [v(x) 

+ ur   (x,r,0)]Tr 

cos 6 +  W(x) sin 0  + u  (x,r) + u    (x,r,0) 
rs D,V 

■D,W 

[w(x) cos 0  + V(x) sin 6  + ufl   (x,r,9) + ufl   (x,r,0)J 
L yD,V yD,W      J 

e9 

(111-29) 

157 



The magnitude, V , of the resultant velocity is consequently given by 

the square root of the sum of the squares of the coefficients in the 

above equation. 

The rate of change of normal and side force with x can be obtained 

from reference 1, equation (85).  In conjunction with equation (111-28), 

the results are 

dC 
N 

dx 

2TT 2TT  2 

= _ M2£l J      Cp sin 9  69  = ^L   j      ^ sin  9  69 

dx 
R(x) 
SR 

f  Cp cos 9 d9 = *fJ- I   -L cos 9 

J os 

de 

(111-30) 

After replacing the perturbation velocities in equation (111-29) 

by their discrete representations as given by equations (111-16), (111-22) 

and (111-26) and substituting the result in equation (111-30), the surviving 

terms in the integrands are those involving  sin2 9     and  cos2 6. 

The integrals therefore reduce to 

dC 2ir 

_^i = RixL  f  r2U(x)u    (x,r,0) + 2u  (x,r)u    (x,r,0) 
bR  Jo   

L      XD,W Xs      XD,W 

+ 2W(x) sin 9  u  (x,r) + 2u (x,r)u    (x,r,0)l sin 9  69 
s r     rD,W      ' 

dC. 2ir 
) (111-31) 

—!LmZteL     f       r2U(x)u    (x.r.fl) + 2u  (xfr)u    (x,r,0) 
dX     R      J0 

D'V s      D»V 

+ 2V(x) cos 9  u  (x,r) + 2u  (x,r)u    (x,r,0)]  cos 0 d0 
s s      rD,V      J J 

Substitutions from equations (111-16), (111-22) and (111-26) yield the 

final results for the axial distributions of the normal and side-force 

coefficients acting on a body of revolution with radius  R(x)  and 
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inserted   in  a  nonuniform  flow  field  characterized by    U(x),   V(x)   and 

W(x) . 

n u._     ™R(X) (x - x.) 

^cS;["2 " & [(x.Xi)»♦ *(.)] V 5/2 

H     (x - xt) 
1 

"   8lr   A    [(x  -  x^»  +   R^(x)]3/2   *    £j     [(x  -  x.)*  +   R*(x)]s/s 

n ^.>wR(x) (x  - x.) 

n 

2 

Us   R(x) Hs   R(x) 
y  li + — y    —  
L       [(X    -   X^2    +    R2(x)]   3/2 87r     ^       [(X    -   X.)2   +    R2(x)]3/ 

r n |i n ^Di,wR2(x' 
  i» 3   V    —  
f(x  - x.)2  +  Re(x)l3/2 A.      f(x  - x.)2  +   R2(x)l s/s\ 

r                     n         IL     vR(x) (x  - x.) 
X=   R(x)    j     3 y Di'V \ 

H    (x - x±) 
1 

n       V      R(x)(x  - x ) 
3     y    l  y l*  

87r    L     f(x   -  x.)2   +   R2(x)l  3/2 ^-  T(x   -  x.)2   +   R2(x)l5/Ö 

i=i     L l J i=i L i J 

n U-   R(x) 
si 

n H     R(x) 
Si + v(x)   y   _i + _i_ y  Z±  

A    f(x  -  x.)2  +   R2(x)l3/2    '   Qw   h    f(x  -  x.)2  +   R2(x)l3/2 
1=1     L 1 J l=i      L 1 J 

[y X>v 3 y ^ 
I     i=l   [(X    "    Xi)2    +    R2(X)]   V2 i^!     [(X    •    Xi 

HD^vR2(x) 

)2   4-    R2 (x)] 5/2 

(111-32) 
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In the equations above, it has been assumed that the number of discrete 

sources, vertical doublets, and horizontal doublets are the same.  This 

condition can be relaxed as long as the number of singularities is 

compatible with the number of control points in each of the three pro- 

blems discussed in section (III-2). 
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